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0. IN~oDUCTI~N 

0.1. Let G be a reductive algebraic group acting algebraically on an 
affine variety X. (We assume the base field to be C, the field of complex 
numbers.) The algebraic quotient X//G is defined by identifying two points 
of X whenever their orbit closures have non-empty intersection. Let 
p: X+X//G be the canonical map. It turns out that X//G is an afline 
algebraic variety whose coordinate ring is the ring of G-invariant regular 
functions on X and that p is a morphism, called the quotient morphism. If 
all orbits are closed (e.g., if G is finite) then X//G is the usual orbit space. In 
general the quotient X//G is in a certain way the best algebraic 
approximation to the orbit space X/G; it became a fundamental tool for 
the study of many algebraic classification problems (cf. [MF, Krl ] ). 

In the case of a compact Lie group K acting on a topological space X 
much is known about the orbit space X/K (see [Br2]). The aim of this 
paper is to extend some of the results from the topological setting to the 
algebraic setting by comparing X/K with X//G when G is a reductive 
algebraic group acting algebraically on an affine variety X and KC G a 
maximal compact subgroup. Here are two of our main results: 
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THEOREM A. The canonical map p: X/K + X//G induces an isomorphism 
in cohomology. 

THEOREM B. If X is contractible (respectively acyclic), then so is X//G. 

0.2. Theorem B is related to a rich history of material from the subject 
of smooth actions of compact Lie groups on contractible manifolds and 
takes its impetus from comparing these actions with representations. The 
activity in this area might be called the Comparison Problem: Compare the 
invariants of smooth actions of compact Lie groups on contractible 
manifolds with those on Euclidean space (or its unit disk) which arise from 
representations of these groups. Chief among these invariants are fixed 
point sets, orbit spaces, and isotropy representations. P. A. Smith’s work 
showed that fixed sets of p-groups acting on contractible spaces are mod p 
acyclic. Montgomery many years ago asked whether the orbit space of an 
action of a compact Lie group on Euclidean space was contractible. This 
was proved by Conner for finite groups and the affirmative statement of 
Montgomery’s question became better known as the Conner Conjecture. It 
was proved by Oliver [012], and Oliver’s theorem plays an important role 
in this paper. To be specific, here are statements of related theorems. Let K 
be a compact Lie group and X, Y paracompact K-spaces of finite 
cohomological dimension and with finitely many orbit types. 

0.3. THEOREM. Let f: X + Y be a K-equivariant map which induces an 
isomorphism in cohomology. Then the orbit map f/K: XfK + Y/K also 
induces an isomorphism in cohomology. 

0.4. THEOREM. Zf X is acyclic (or contractible), then so is X/K. 

Oliver’s theorem on the contractibility of the orbit space is the only 
result (known to us) in the Comparison Problem which holds for all com- 
pact Lie groups. For example, Oliver [011 J has shown that the fixed set of 
a smooth action on a disk can be quite arbitrary provided it is consistent 
with Smith’s theorem and the Lefschetz Fixed Point Theorem. Petrie and 
Randall [PRl] have shown that the set of isotropy representations of an 
action on a disk can be quite arbitrary subject to Oliver’s conditions on 
fixed sets. (Since the interior of a disk is diffeomorphic to Euclidean space, 
these results have implications for actions on Euclidean space.) 

0.5. Our long-term goal is to determine the extent to which these 
results on the Comparison Problem for smooth actions of compact Lie 
groups carry over to algebraic actions of reductive groups on smooth 
contractible varieties. Very little is known about such actions. The basic 
problem is: 
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LINEARITY PROBLEM. Is every algebraic action of a reductive group G 
on the alline space C” isomorphic to a representation? (See note added in 
proof.) 

The Linearity Problem is known to have an affirmative answer only in 
some very special cases, e.g., for one fix pointed actions (1.1) with a fixed 
point set of dimension ~2, or for semisimple groups G and dimension 
n < 4 (see [Kr2]). Theorem B is the only general result in this area which 
holds for all reductive groups. In the spirit of the Comparison Problem we 
note that quotient spaces of representations are contractible, so an affir- 
mative solution to the Linearity Problem would imply Theorem B. 

0.6. One must be careful with the implications of the results from the 
smooth setting for the algebraic setting. In [PRZ] it is shown that for finite 
groups, real algebraic actions on varieties diffeomorphic to R” correspond 
to smooth actions on the unit disk in R”. This implies, for example, that an 
algebraic action of a cyclic group on R” has a fixed point while a smooth 
action need not. 

0.7. We note that if the quotient variety of a representation is smooth, 
it is isomorphic to Ck, where k is the dimension of the quotient. (This is 
well known and due to the fact that the coordinate ring of the quotient is 
graded and its homogeneous maximal ideal is by assumption generated by 
k elements [Krl, II4.3 Lemma 11.) This leads to the following: 

PROBLEM. If G is reductive, X a G-variety isomorphic to C”, and X//G 
smooth of dimension k, is X//G isomorphic to Ck? 

This has an affirmative answer for k < 2 (see [Kr2]) but is unknown 
for k > 2. We can, however, say something using Theorem B (see 
Corollary 4.4). 

COROLLARY. Let X be a G-variety diffeomorphic to C”. If X//G is smooth 
of dimension k, then (X//G) x C is diffeomorphic to Ck + I. 

We note that X//G need not be diffeomorphic to Ck (see Remark 4.5). 

0.8. An essential point in our approach is to understand the topology of 
one fix pointed G-varieties. By definition an afhne G-variety is called onefix 
pointed if p is a single point x,‘and x0 is in the closure of every G-orbit in 
X, or equivalently, if Xc is a single point and every G-invariant regular 
function on X is a constant. It follows from Luna’s Slice Theorem that a 
smooth one fix pointed shine G-variety is G-isomorphic to a representation. 
In particular, it is contractible. We show that this is true in general. 

THEOREM C. A one fix pointed affine G-variety X is contractible. 
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0.9. This paper is organized as follows. In the first section we prove 
Theorem C. In the second we introduce the concept of homologically 
proper maps and show that a quotient morphism p: X + X/G and the 
induced map p: X/K+ X//G are homologically proper. From this 
Theorem A follows easily. In Section 3 we study the fundamental group of 
a quotient variety. A result due to Bredon shows how to calculate it in the 
case of a finite group acting on a simply connected space. In Section 4 we 
present a proof of Theorem B. This result is the main application of our 
methods. Further applications and some remarks are given in the last 
section. 

0.10. Conventions and Notations. In what follows all topological spaces 
are supposed to be locally contractible and of finite cohomological dimen- 
sion. It is known that algebraic varieties have these properties, where we 
always use the ordinary C-topology. In fact algebraic varieties are 
triangulable as locally finite simplicial complexes and admit algebraic com- 
pactifications (see [KP, Appendix]). In particular we can work with 
singular or Tech cohomology (or Alexander-Spanier or sheaf cohomology, 
see [Brl, I.7 and III]) where cohomology with integral coefficients is to be 
understood. For some basic material from algebraic geometry and 
algebraic transformation groups we refer to the literature (see [Krl, Kr2, 
MF]). We mainly work with afflne varieties, i.e., zero-sets of polynomials 
in C”, and with reductive groups, i.e., algebraic groups all of whose rational 
representations are completely reducible. 

Note. After having finished a first version of this paper we became 
aware of the work of A. Neeman [Ne], which has some overlap with ours. 
Using [Ne, Corollary 2.21 (in Proposition 2.2 here) allowed us to remove 
the assumption that X is smooth in several places. The introduction to 
[Ne] notes that [Ne, Conjecture 3.11 follows from an inequality of 
Lojasiewicz [t, Proposition 1, p. 921, and that means that [Ne, 
Theorem 2.11 can be improved to include a > 0. Using this improved 
version of [Ne, 2.11 would shorten some of our arguments and offers a 
different approach to our Theorems A and B. However, a proof of the 
tojasiewicz inequality already is more involved than what is done directly 
here. 

1. ONE FIX POINTED VARIETIES ARE CONTRACTIBLE 

Let G be a reductive group. The aim of this section is to prove 
Theorem C. More generally we show the following: 

THEOREM C ‘. Let X be an affine G-variety and let Y be a G-invariant 
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subvariety which contains all closed orbits of X. Then the inclusion of Y into 
X is a homotopy equivalence. Equivalently, ni(X, Y) = 0 for all i. 

The proof requires some preliminaries which we now develop. 

1.1. DEFINITION. An afline G-variety X is called fix pointed if every 
closed orbit is a fixed point. It is called one fix pointed if in addition there is 
only one fixed point. 

The following two results are due to Kempf. 

1.2. LEMMA (cf. [Ke2, Sect. 23). Let X be afix pointed C*-variety. Then 
the inclusion Xc* 4 X is a homotopy equivalence. In fact there exists a 
C*-equivariant deformation retraction of X onto Xc*. 

Proof. Let 

for&= +l.ThenX=X,uX-,andXC*=X,nX-,,sinceXisfixpointed. 
The morphisms dE: C* x X, -+ X, extend to morphisms FE’,: C x X, + X,, 
where (0, x) maps to the fixed point in the orbit closure C*x. This clearly 
implies the claim. 1 

Let G be connected, let X be an affme G-variety, and let Y c X be a 
G-stable closed subvariety. In [Kel] Kempf has introduced the concept of 
an optimal one-parameter subgroup I for a point x E X with respect to Y. 
See [Kel, Theorem 3.41. Such a I exists and lim,,, J(t)x E Y if the orbit 
closure Gx meets Y. There can be several optimal one-parameter subgroups 
for x, but they all have the same associated parabolic subgroup PA. 
Furthermore, using [Kel, Corollary 3.5(a)] we have the following result: 

1.3. PROPOSITION. Let x E X and g E G. Zf the one-parameter subgroup 1 
is optimal for x and gx, then gE Pi.. 

1.4. LEMMA. Let G be a reductive group and let X be an irreducible 
G-variety such that the union of the closed orbits in X is not Zariski-dense. 
Then there exist a one-parameter subgroup 13 and PA-stable closed sub- 
varieties Y0 c X0 of X with the following properties: 

(a) X0 is irreducible and X = GX,; 

(b) Y = G Y, is a proper closed subvariety of X; 

Cc) lhdo I(t)xE Y. for all xE X0; 

(d) The canonical map 

G xp;. (xo, Yet + C-K Y) 
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is a proper relative homeomorphism (i.e., a proper map which is a 
homeomorphism G x pi (X0 - Y,,) 3 X - Y of the complements). 

Proof: Let X’ be the Zariski closure of the union of closed orbits in X. 
Fix a maximal torus T of G and denote by A the set of one-parameter sub- 
groups of T. For Iz E /i put 

X(A) := {XEXIA is optimal for x (w.r.t. X’)>. 

It follows from Proposition 1.3 and the definition of PA that X(1) is 
P, -stable and that X = iJ 1 E ,, G . X(n). Since n is countable this implies that 
X= G . X(1,) for some Iz, E A. (Here s denotes the Zariski closure of the 
subset S in X.) We now use A to stand for I,. X(n) is Pi-stable, hence 
G .X(n) = X (cf. [Krl, 111.2.5 Satz 23). Therefore there is an irreducible 
component X,, of X(n) with GX, = X. Clearly X0 is PA-stable too, and the 
G-equivariant morphism 

is surjective and proper. (In fact, decompose 4 as the composition 

Gxp, X02 Gx,, XL G/&xX3X, 

where I : G x p; X0 4 G x pL X is the inclusion, whose image is closed, and $ 
is the isomorphism given by $[g, x] = ([g], gx) for g E G, x E X. Since 
G/P, is compact the claim follows.) By 1.3, +4 is injective on the dense 
subset G x pn (X0 n X(1)). This shows that 4 is birational, hence there is a 
G-stable Zariski-open subset UC X such that 4 induces an isomorphism 
&‘( U)r U. Since X properly contains X’ we may assume that 
U A X’ = 0. Define Y = X- U. Then the inverse image & ‘( Y) is G-stable 
and Zariski-closed, hence of the form G x pi, Y, with Y, = Y n X0 3 X’ n X0. 
Note that lim, _ O I(t)xEX,nX’forall~EX~,since X(l)nX,isdensein 
X,, and (xEX,,Ilim,,, ,J.( t)x E x’> is Zariski-closed. Thus lim, _ ,, A( t)x E 
YO for all XE Y,. This shows that 4 is a relative homeomorphism, and 
verifies (c). 1 

Now we give a result whose analog in cohomology is well known. A pair 
(Xi Y) will be called triangulable if it is homeomorphic to a pair (A, B) of a 
locally finite triangulable simplicial complex A and a subcomplex B. It 
follows that Y has arbitrarily small regular neighborhoods, i.e., closed 
neighborhoods N of Y such that Y is a deformation retract of N (cf. [ES, 
Chap. II, Sect. 9, and Exercise F]). 

1.5. PROPOSITION. Let (X, Y) and (X’, Y’) be triangulable and let 
f: (Xl, Y’) -+ (X, Y) be a proper relative homeomorphism. Suppose 
x,(X’, Y’) = 0 for all i. Then x,(X, Y) = 0 for all i. 
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Proof. By [Hi, VII, Theorem 1.71 we have zi(X, Y) = 0 for all i if and 
only if every map of a finite complex into X is homotopic to a map into Y; 
moreover, if a subcomplex is mapped into Y, the homotopy may be chosen 
to have this property also. We must therefore show that any map y : A + X, 
where A is a finite complex, is homotopic to a map into Y. Since f is a 
proper relative homeomorphism, it maps each open set in X’ which con- 
tains Y’ onto an open set in X. Hence there are regular neighborhoods 
N, c M of Y and N’ of Y’ with f-‘(N,,) c N’ cf-‘(M). Let N, := X-N,, 
so that X=NOuN,, and let Ai:=y-‘(Vi) and B:=A,nA,. We have 
A = A0 u A i. By the Simplicial Approximation Theorem [ES, Chap. II, 
Theorem 7.31 we may assume that y is simplicial and therefore that A, and 
A, are subcomplexes of A. Note that y(A,)n Y=@; so if yi =yIA,, then 
yi:(A,,B)+(X,N,) lifts to a map jji:(A,,B)+(X’,N’) with fjj,=yl. 
Since Y’ is a deformation retract of N’ and n,(X’, Y’) = 0 for all i, there is a 
homotopy 5,: (A,, B) + (xl, N’) with K,=yi and Kr(A,)c N’. Let 

bfk: (A,, W-,(X MO) 

and let H,: (A, A,) --f (X, M,) be a homotopy of y which extends h, (use 
the Homotopy Extension Theorem). Then H,(A) c M,, so y is homotopic 
to a map into M,,. Since M, has Y as a deformation retract, y is homotopic 
to a map into Y. This completes the proof. i 

1.6. Now we are ready to prove Theorem C’. We may suppose that G is 
connected. In fact the connected component G” is of finite index in G, 
hence the union of closed G-orbits in X is equal to the union of closed 
GO-orbits. 

Proof of Theorem C’. By induction, we may assume that the claim has 
been proved for every pair (X’, Y’), where X’ is a proper G-stable sub- 
variety of X and Y’c X’ is a G-stable closed subvariety containing all 
closed orbits of X’. It suffices therefore to prove the claim for one pair 
(X, Y) with Y#X (in case such a pair exists: otherwise there is nothing to 
prove). If X is irreducible this follows from previous results. In fact in the 
notation of Lemma 1.4 the closed subvarieties Y, c X0 are both fix pointed 
C*-varieties via the one-parameter subgroup I and X,C’c Y0 (1.4(c)). 
Therefore the inclusion Y, c X0 is a homotopy equivalence by Lemma 1.2. 
But G xpi Y, and G xpj, X0 are bundles over G/PA with fibres X,, and Y,, 
hence the inclusion G xp; Y, 4 G xp, X0 is a homotopy equivalence too. 
Since algebraic varieties are triangulable (0.10) we can apply 
Proposition 1.5 to the proper relative homeomorphism G x pA (X0, Y,) + 
(X, Y) (1.4(d)). If X is reducible, let Y c X be the closure of the union of the 
closed orbits in X and X’ an irreducible component of X not contained in 
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Y. Let X” be the union of the other irreducible components of X. Then the 
claim holds for (X’, Y’) with Y’ = (X’ n X”) u (Y n X’). Since the inclusion 
(xl, Y’) 4 (X, Y u X”) is a proper relative homeomorphism, the claim also 
holds for (X, Yu X”). 1 

In the case G = C* we have the following additional information about 
one fix pointed G-varieties: 

1.7. PROPOSITION. Let X be an irreducible one fix pointed C*-variety 
with fixed point s and assume X # {s}. Then X - (s} is homeomorphic to 
C x R, where C is compact and connected. Consequently X has one end 
oc, and 

where n,(X), denotes the local fundamental group at s and 71, (CO) the 
fundamental group at the end co. 

ProojI It is not hard to see that the action of C* on k := X - {s) is 
proper and that the orbit space X/C* is compact. (In fact one can always 
embed X as a closed subvariety in a C*-representation V with weights of 
only one sign. Now intersect X with the unit sphere in V.) It follows from 
[Ab, Theorem 2.11 that X is S i -isomorphic to C x R with a compact 
S ’ -space C and trivial action on R, from which the claims can be easily 
deduced. 1 

1.8. Theorem C and Proposition 1.7 give necessary topological con- 
ditions for a variety to support a one fix pointed G-action. The final answer 
to the problem of characterizing such varieties, however, must take into 
account the algebraic structure of the variety and not just its topology. To 
see this, we note that there is a smooth 3-dimensional aftine variety V 
which is diffeomorphic to but not algebraically isomorphic to C3. In fact 
we can take V= N x C, where N is the Ramanujam afine surface [Ra] 
which is contractible but not isomorphic to C2. This V is not isomorphic to 
C3 by [Fu], but is diffeomorphic to C3 because it is contractible and 
l-connected at infinity. (A theorem of Stallings [St] asserts that a contrac- 
tible smooth manifold of dimension n 2 5 which is simply connected at 
infinity is diffeomorphic to R”.) Even though V is diffeomorphic to C3 
(which obviously supports a one fix pointed C*-action), V does not have a 
one fix pointed action because one fix pointed actions on smooth varieties 
are linear (0.8). 
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2. QUOTIENT MAPS ARE HOMOLWICALLY PROPER 

2.1. DEFINITION. A continuous map f: X -+ Y is called homologically 
proper if for every y E Y the canonical homomorphisms 

12, HP(f-l(U))rHp(f--l(y)), 

where U runs over a system of neighborhoods of y, are isomorphisms for 
all p. 

Clearly a proper map is homologically proper. Another way to express 
the definition is in terms of the Leray sheaf xP(f) of the map f: Recall 
that Z”(f) is the sheaf associated to the presheaf UH Z-ZP(f-‘( U)) on Y. 
If f is homologically proper we have canonical isomorphisms 

~“(f)y~Wf--l(YN for all y E Y. 

In particular it follows from the Leray spectral sequence that a 
homologically proper map with acyclic fibres induces an isomorphism in 
cohomology. 

2.2. PROPOSITION. Let G be a reductive group, KC G a maximal compact 
subgroup, and X an affine G-variety. Then the quotient morphism 
p: X + X//G and the induced map p: XJK + X//G are both homologically 
proper. 

Proof: In case X is smooth it follows from Luna’s Slice Theorem that 
every point y E Y := X//G has a fundamental system of neighborhoods 
{ uiliol such that the inclusions p-‘(y) 4 p- ‘( Vi) are homotopy 
equivalences. Since p-‘(y) = p-‘( y)/K and JV’( Vi) = p-‘( U,)IK, Oliver’s 
Theorem 0.3 implies that the inclusions p-‘(y) 4 p-‘(Vi) induce 
isomorphisms in cohomology too. In general, by a result of Neeman [Ne, 
Corollary 2.23, there is a closed K-invariant subset X’ c X which is a defor- 
mation retract of X with a deformation along G-orbits such that 
p’ := plx*: X’ + Y is proper and surjective. In particular for every open 
subset UC Y the inclusion p-‘(U)n X’G p-‘(U) is a homotopy 
equivalence. It follows again from Oliver’s Theorem 0.3 that p-‘(U) n 
xl/K 4 pP l(U) induces an isomorphism in cohomology too, since clearly 
pl(U)nX’/K=(p-‘(U)nX’)/K. 1 

Remark (Luna). For a smooth G-variety X the Leray sheaf Z*(p) of 
the quotient morphism p: X + X//G is locally constant along the strata of 
X//G given by the slice representations. 

For the proof of Theorem A we need the following lemma, which holds 
for every Lie group having a finite number of connected components. 
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2.3. LEMMA. Let G be an algebraic group, H c G a closed algebraic sub- 
group, and KC G a maximal compact subgroup. Then the double coset space 
KG/H is contractible. 

Proof. Replacing K by a conjugate if necessary, we can assume that 
K’ := Kn H is a maximal compact subgroup of H. By a theorem of 
Mostow [MO, 10, Theorem A] there is a closed Euclidean subspace F of G 
which is stable under conjugation by K’ such that G/H= Kx,, F. Hence 
KG/Hz F/K’, which is contractible by Oliver’s Theorem 0.3. 1 

Remark. We will only need that the double coset space KG/H is 
acyclic for which we offer the following direct proof. The Iwasawa decom- 
position implies that the inclusions KG G and K’ 4 H are homotopy 
equivalences. It follows from the exact homotopy sequences for the 
tibrations K + K/K’ and G -+ GfH that the inclusion K/K’4 G/H is a 
homotopy equivalence too. Now the claim follows from Theorem 0.3. 

2.4. Now we are ready to prove our first main result. 

THEOREM A. Let G be reductive, KC G a maximal compact subgroup, 
and X an affine G-variety. Then the canonical map p : X/K + X//G induces an 
isomorphism in cohomology. 

Proof: We already know that p is homologically proper 
(Proposition 2.2). It remains to show that the libres of p are acyclic 
(see 2.1). It follows from Luna’s Slice Theorem that the fibres of the 
quotient morphism p: X-t X//G are of the form G xH Z, where H c G is a 
closed reductive subgroup and Z a one fix pointed shine H-variety. In 
particular the inclusion G/H 4 G xH Z is a homotopy equivalence by 
Theorem C. As a consequence of Theorem 0.2 the map K\G/H 4 
K\G x,, Z is a cohomology isomorphism, hence K\G xH Z is acyclic by 
Lemma 2.3. Clearly the fibres of p are of this form, 1 

Using Theorem 0.2 we get the following consequence which is the second 
part of Theorem B. 

2.5. COROLLARY. If X is acyclic, then so is X//G. 

More generally we find: 

2.6. COROLLARY. Let f: X -+ Y be a G-equivariant morphism of afJne 
G-varieties. If f induces an isomorphism in cohomology, then so does 
f: X//G -+ Y//G. 
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3. FUNDAMENTAL GROUPS OF QUOTIENTS 

We first recall an important result from the theory of Kempf and Ness 
([KN, cf. DK]). 

3.1. PROPOSITION. Let G be a reductive group, KC G a maximal compact 
subgroup, and X an affine G-variety. Then there is a real algebraic subvariety 
XC with the following properties: 

(a) X, is contained in the set of closed orbits and meets every closed 
orbit of X; 

(b) For all x E XC we have Gx n XC = Kx ; 

(c) For all x E XC, K, is a maximal compact subgroup of G,. 

Proof If X is a representation of G, this is [PS, 2.4 Remark 2, and 
2.1(4)]. In general we embed X as a G-invariant subvariety in a represen- 
tation V of G and put X, = V, n X. i 

Let pC: X, + X//G and PC: XC/K + X//G be the obvious maps. Since the 
variety X//G carries the quotient topology from X [Lu, Theoreme 2.71 we 
immediately get the following: 

3.2. COROLLARY. The canonical map DC: X,/K + X//G is a homeo- 
morphism. 

The next two results follow from 3.2 and the fact that the map X, --f X,/K 
has the path lifting property [Br2, Chap. II, Theorem 6.2 and 
Corollary 6.31. 

3.3. COROLLARY. The quotient map p: X +X//G has the path lifting 
property. 

3.4. COROLLARY. If X is connected and if p: X + X//G has at least one 
connected fibre (e.g., if G is connected or X” # 0) then p*: xl(X) + 
71 1(X//G) is surjective. 

The following proposition (due to Armstrong [Ar]) and its proof have 
been communicated to us by Bredon. 

3.5. PROPOSITION. Let G be a finite group and X an arcwise connected 
and simply connected G-space. Then 71,(x/G) is the quotient of G by the nor- 
mal subgroup G, generated by all isotropy groups G,, x E X. 

Proof: First we show that X/G, is simply connected. Once this is 
established the claim follows since G/G, acts freely on X/G,, hence 
z,(X/G) is isomorphic to G/G,. 
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In order to show that X/G, is simply connected we may assume that 
G = G,. Let p: X+ X/G be the orbit map. Choose a base point x0 E X. 
Since X is simply connected, the map 4 : G + 71, (X/G) defined by 4(g) = py 
for ge G, where y is any path in X from x0 to gxO, is a well-defined 
homomorphism. The result on path lifting (Corollary 3.3) implies that 4 is 
onto. We now show that each isotropy group G, for x E X lies in the kernel 
of 4. Let g E G,, and choose a path 9 from x0 to x and a path y from x0 to 
gx,. Then the composition of paths 8 - ‘( g9)y defines a loop y’ in X which 
is null-homotopic. Thus py’ is a null-homotopic loop in X/G. But py’ is 
homotopic to py = 4(g). This argument shows that each isotropy group lies 
in the kernel of 4. Since G is generated by the isotropy subgroups of the 
action on X, the kernel of 4 is G. 1 

3.6. Remark. Clearly Gx is generated by all subgroups PC G of prime 
power order which have a non-empty fixed point set. Hence zj”X is contrac- 
tible then the orbit space XfG is simply connected, since by Smith Theory 
every finite p-group has a fixed point. 

More generally we claim the following: 

3.7. COROLLARY. Let G be a finite group and X, Y arcwise connected 
and simply connected G-spaces. If f: X + Y is a G-map which induces an 
isomorphism in cohomology then G, = G y and f* : 71 ,(X/G) 3 zl( Y/G) is an 
isomorphism. 

Proof Clearly G, c G y. On the other hand, if p is a prime and P c G is 
any subgroup of p-power order, then f * : H*( Yp, Z,) + H*(X’, Z,) is an 
isomorphism by Smith Theory. (Use the mapping cone of j) Thus Xp and 
Yp are either both empty or both nonempty, so G,= G,. The result then 
follows from 3.5. 1 

4. SOME QUOTIENTS ARE CONTRACTIBLE 

We now want to prove Theorem B, that the quotient of a contractible 
affine G-variety is contractible. For the proof we need the following 
theorem of J. H. C. Whitehead (see [Hi, Chap. VII, Theorem 3.81). 

4.1. THEOREM. Let X and Y be triangulable spaces and f: X + Y be a 
map which induces an isomorphism of fundamental groups and an 
isomorphism in cohomology on universal covering spaces. Then f is a 
homotopy equivalence. 

In particular a simply connected acyclic variety is contractible. 
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4.2. THEOREM B. Let X be a contractible affine G-variety, G a reductive 
group. Then the quotient X//G is contractible. 

Proof Let G” be the connected component of G. Then X//G” is acyclic 
by Corollary 2.5 and simply connected by Corollary 3.4. Hence X//G’ is 
contractible. Therefore we are reduced to the case of a finite group G, 
where the claim follows from Theorem A and Remark 3.6. 1 

Theorem B is a special case of the following more general result. (Take Y 
to b a point.) 

4.3. THEOREM B’. Let X and Y be simply connected affine G-varieties 
and f: X + Y a G-morphism which induces an isomorphism in cohomology. 
Then f: X//G + Y//G is a homotopy equivalence. 

Proof: Again let G” be the connected component of G. Both spaces 
X//G” and Y//G” are simply connected (3.4) and fO: X//G” + Y//Go is a 
cohomology equivalence (2.6). Hence we are reduced to the case of a finite 
group G. By Corollary 3.7, G, = G ,, and X//G, and Y//G r are both simply 
connected, hence X//G, + Y//G ,, induces an isomorphism in cohomology 
(2.6). So we may assume that the finite group G acts freely on X and Y, in 
which case the claim follows from Whitehead’s Theorem 4.1. 1 

4.4. COROLLARY. Let X be a G-variety diffeomorphic to C”. If X//G is 
smooth of dimension k, then (X//G) x C is dtffeomorphic to Ck+ ‘. 

Proof By Theorem B, (X//G) x C is contractible. It is also simply 
connected at infinity, so by Stalling’s theorem [St] it is diffeomorphic 
to Ck+l. [ 

4.5. Remark. In general the assumption that the G-variety X is dif- 
feomorphic to C” and X//G is smooth of dimension k does not imply that 
X//G is isomorphic to Ck. For example, take X= Nx C (see 1.8) and let 
G = C* act trivially on N and by multiplication on C. Then X//G = N is not 
diffeomorphic to C?. 

Here is another application of Whitehead’s theorem. 

4.6. PROPOSITION. Let X, Y be triangulable spaces and f: X+ Y a 
homologically proper map with acyclic fibres. If f induces an isomorphism 
f* : n,(X) 3 a,( Y), then f is a homotopy equivalence. 

Proof Let f: B --) t be the map induced by f on universal covering 
spaces. Since f induces an isomorphism on fundamental groups, for every 
open U c p which is mapped homeomorphically onto rz ,( U) c Y under the 
covering map ny: r+ Y, the inverse image J-‘(U) is mapped 
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homeomorphically onto f -‘(7ry( U)) under 7zx: w+ X. It follows that f is 
homologically proper with acyclic fibres, hence a cohomology isomorphism 
by the Leray spectral sequence. Now the claim follows from Whitehead’s 
theorem. 1 

4.7. With this result we get the following extension of Theorem A in the 
simply connected case. 

THEOREM A’. Let X be a simply connected G-variety. Then 
jj : XfK + X//G is a homotopy equivalence. 

Proof. We know that jj is homologically proper (2.2). By 
Proposition 4.6, we must therefore show that p induces an isomorphism of 
fundamental groups. By 3.4, X//Go is simply connected, and X/K” is simply 
connected too [Br2, Chap. II, Corollary 6.31. Moreover K/K” = G/G” acts 
on these spaces with orbit spaces X/K and X//G, respectively. Since 
PO: X/K” + X//G” is a homotopy equivalence by Theorem A and 4.1, 
Corollary 3.7 implies that jj induces an isomorphism of fundamental 
groups. 1 

5. SOME REMARKS AND MORE APPLICATIONS 

So far we have mainly worked with afline G-varieties and their quotients. 
There is an obvious generalization of this concept to any G-variety which is 
important for applications to moduli schemes (cf. [MF]). Let us recall that 
a variety X is a space with a sheaf of C-valued functions, which has a finite 
open covering by affine varieties. As before G will always denote a reduc- 
tive algebraic group. 

5.1. DEFINITION. Let X be a G-variety. A morphism p : X + Y is called 
a quotient of X by G if p is constant on orbits and satisfies the following 
condition: 

(Q) For every afftne open subvariety UC Y the inverse image 
p;‘(U) is affine and p : p- ‘(U) -+ U is a quotient (of affine varieties). 

(One can show that the condition (Q) has only to be checked for an 
open affine covering of Y. ) 

Most of the properties of quotients of afline G-varieties hold in this 
morale general setting. In particular quotients are unique up to isomorphism 
(if they exist); quotient morphisms p: X + Y are surjective and map G-stable 
closed subsets to closed subsets. 

EXAMPLES. (a) The canonical map p: C” + i - { 0 > + P” is a quotient 
by C*. 
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(b) Let k < n and ML,, be the set of k x n matrices of maximal rank 
k. Then the canonical map p: ML.. + Grk.n, where Grk,n is the Grassman- 
nian and p sends a matrix to the span of its row vectors, is a quotient 
by GLk. 

(c) If p: X+ Y is a quotient by G and Y’ c Y a locally closed sub- 
variety, then p: p-‘( Y’) + Y’ is a quotient too. 

Many of our results in the previous sections remain true in this more 
general setting, in particular Theorems A, A’, B, and B’. (In fact a quotient 
morphism p: X+ Y has the path lifting property (3.3) and p as well as 
p: X/K + Y is homologically proper (2.2). From this the theorems follow 
with the same proofs as in the afIine case.) 

As an example let us point out the following result. 

5.2. PROPOSITION. Let p : G + GL( V) be a representation of a semisimple 
group G. Then the open subvariety (V//G),,, of non-singular points of the 
quotient V//G is simply connected. 

Proof: Let p: V + V//G be the quotient morphism. We first remark that 
every G-stable hypersurface Hc V is defined by an invariant polynomial f, 
since G has no characters. Hence its image p(H)c V//G is also defined by 
the function f, and therefore has codimension 1 by Krull’s Hauptidealsatz 
[Krl, AI.3.41. Now V//G is normal, and so the closed subvariety S of 
singular points of V//G has codimension 22 (cf. [Krl, 11.3.3 Satz 1 and 
AI.6.1 Satz]). This implies that the inverse image p-‘(S) has codimension 
at least 2. Therefore V’ := V-p-l(S) = p-‘(( V//G),,) is simply connec- 
ted. Since pi ,,, + (V//G),,, is a quotient map the claim follows from 
Corollary 3.4. 1 

As an easy consequence we get the following result due to Kempf [Ke2, 
Theorem 2.41. 

5.3. COROLLARY. If V//G is of dimension 2 then it is isomorphic to C2. 

Proof In fact V//G is a one fix pointed C*-variety with fixed point 
s := p(O), and s is the only possible singularity (since V//G is normal; see 
proof of Proposition 5.2). It follows from Propositions 1.7 and 5.2 that the 
local fundamental group of V//G at s is trivial. By Mumford’s Smoothness 
Criterion [Mu], this shows that V//G is smooth, hence isomorphic to C2 
(being one fix pointed: see 0.8). 1 

5.4. Remark. In the case of a representation of a finite group H on a 
vector space W we have in contrast to Proposition 5.2 the following result: 
If W/G is singular then (W/G),,, is not simply connected. 

In fact let us consider the image H’ of H in GL( W) and denote by Hi the 

601/74/Z-2 
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(normal) subgroup of H’ generated by pseudo-reflections. By Chevalley’s 
theorem the quotient W/H= W/H’ is smooth if and only if H; = H’ 
[BGAL, Chap. V.5.5, Theoreme 41. In particular W/H; is isomorphic to a 
vector space w  on which Ef := H’/H: acts linearly with quotient - - 
W/H = W/H, and flc GL( w) contains no reflections. But then the - - 
singular points of W/H are exactly the images of points with non-trivial 
isotropy group, which form a subvariety S of codimension 22. Thus the 
complement W-S is simply connected with a free action of Z7, hence 
rri(( W/H),,) is isomorphic to R= HI/H:. 

Combining 5.4 with Proposition 5.2 (and the fact that a smooth quotient 
of a representation is isomorphic to Cn) we arrive at a result due to 
Panjushev [Pa]. 

5.5. COROLLARY. Consider a representation of a semisimple group G on 
a vector space V and a representation of a finite group H on a vector space 
W. If V//G is isomorphic to W/H then both are isomorphic to C”. 

Our methods also allow us to generalize some of the results obtained by 
Kraft, Luna, and Schwarz (unpublished) concerning the following: 

Conjecture. Consider an action of a reductive group G on C” with a 
one-dimensional quotient C”//G. Then the action is linearizable. (See note 
added in proof.) 

In fact we believe that linearization holds more generally for any action 
of a reductive group on a smooth affine acyclic variety with one-dimen- 
sional quotient. A first observation is the following: 

5.6. LEMMA. Let X be a normal affine G-variety with one-dimensional 
quotient X//G. If X is acyclic then X//G is isomorphic to C. 

(In fact X//G is normal, hence a smooth atline curve. By Theorem B it is 
acyclic and therefore isomorphic to C.) 

5.7. Now suppose that X is a smooth affine acyclic G-variety with a one- 
dimensional quotient. The following results can be obtained using the 
methods developed by Kraft, Luna, and Schwarz and Lemma 5.6 above: 

(A) The fixed point set Xc is either a point or isomorphic to C. 

(B) X is rational. 

(C) X is G-isomorphic to a representation in the following cases: 

(1) There is more than one fixed point; 

(2) G is simple; 

(3) The generic orbit is closed with trivial stabilizer. 
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