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On the Lie Algebra of Vector Fields of Affine Varieties

There is some fundamental work of Grabowski and Siebert on the structure
of the Lie algebra of vector fields of an affine variety X, or, more generally, on
the Lie algebra of derivations of an algebra A, see

Gr1978Isomorphisms-and-i
[Gra79] and

Si1996Lie-algebras-of-de
[Sie96]. A central

question is how much information about X (or A) can be retrieved from this Lie
algebra.

For example, it follows from the work of Seidenberg
Se1967Differential-ideal
[Sei67] that the singu-

lar locus Xsing is invariant under all vector fields and that every strict invariant
subvariety is contained in Xsing, and Siebert shows that X is smooth if and only
if Vec(X) is a simple Lie algebra (one implication was proved earlier by Jordan
in

Jo1986On-the-ideals-of-a
[Jor86]. The main result of

Si1996Lie-algebras-of-de
[Sie96] is that two normal affine varieties X,Y are

isomorphic if and only if the vector fields are isomorphic as Lie algebras. (The case
of two smooth varieties X,Y goes back to Grabowski.)

The aim of these notes is to explain these notions and to prove some of these re-
sults in the case of an affine variety over an algebraically closed field of characteristic
zero.

1.1. Vector fields. We start with some basic notions related to vector fields on an
affine variety X. Our base field K is algebraically closed of characteristic zero. We
denote by Vec(X) the Lie algebra of vector fields on X, i.e. Vec(X) = Der(O(X)),
the derivations of the coordinate ring O(X) of X. The vector fields Vec(X) form a
Lie algebra, namely a Lie subalgebra of the linear operators Endk(O(X)): [ξ, η] :=
ξ ◦ η − η ◦ ξ. They also have a structure of an O(X)-module where f · ξ is defined
by (f · ξ)x := f(x)ξx for x ∈ X. The two structures are interrelated by the formula

[ξ, f · η] = ξ(f) · η + f · [ξ, η].

Note that the evaluation map εx : Vec(X)→ TxX, εx(ξ) := ξx is an O(X)-module
homomorphism with the obvious O(X)-module structure on TxX.

In the following, L ⊆ Vec(X) will be an O(X)-Lie subalgebra, i.e. a Lie sub-
algebra which is also an O(X)-submodule. The most interesting case for us is
L = Vec(X), but many results hold in the more general setting. We define some
maps between subsets of L, subsets of O(X) and subsets of X. We use the following
notation for D ⊆ L and F ⊆ O(X):

D(F ) := 〈ξ(f) | ξ ∈ D, f ∈ F 〉 ⊆ O(X), the linear span of the images ξ(f).

Definition 1. (1) For a subset D ⊆ L we define the ideal ID ⊆ O(X) of D
and the zero set V(D) ⊆ X of D:

ID := O(X)D(O(X)) ⊆ O(X), the ideal generated by D(O(X)),

V(D) := {x ∈ X | ξx = 0 for all ξ ∈ D} = VX(ID) ⊆ X.

(2) For an ideal I ⊂ O(X) we set

LI := {ξ ∈ L | ξ(O(X)) ⊂ I} ⊆ L,

and for a subset Y ⊆ X

LY := {ξ ∈ L | ξy = 0 for all y ∈ Y } = LI(Y ) ⊆ L

where I(Y ) ⊂ O(X) is the vanishing ideal of Y .
1
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VF.rem Remark 1. By definition, Lx := L{x} is the kernel of the evaluation map εx : L →
TxX and therefore of finite codimension in L. It is easy to see that Lx is an O(X)-
Lie subalgebra of L. More generally, LI is an O(X)-Lie subalgebra for every ideal
I ⊆ O(C), and I · L ⊆ LI . We also see that V(D) ⊆ X is closed and that

V(Vec(X)) = {x ∈ X | ξx = 0 for all ξ ∈ Vec(X)}
= {x ∈ X | Vec(X)x = Vec(X)}.

Example 1. The vector fields Vec(An) of affine n-space An = Kn form a free
O(An) = K[x1, . . . , xn]-module generated by ∂x1

, . . . , ∂xn
where ∂xi

= ∂
∂xi

:

Vec(An) =

n⊕
i=1

K[x1, . . . , xn] · ∂xi
.

It follows that the vector fields generate the tangent space at every point a ∈
An, i.e. the evaluation map εa : Vec(X) → TaAn is surjective for all a ∈ An. If
ma ⊂ O(An) denotes the maximal ideal corresponding to a ∈ An we see that
Vec(An)a = ma · Vec(An), and this it is a maximal Lie subalgebra of Vec(An) of
codimension n. More generally, we have Vec(An)I = I ·Vec(An). Moreover,

Vec(An)(O(X)) = 〈ξ(f) | ξ ∈ Vec(An), f ∈ O(An)〉 = O(An).

In fact, for every homogeneous f ∈ O(An) we have η(f) = deg(f)f for the Euler-
field η := x1 · ∂x1

+ · · ·+ xn · ∂xn
.

One can show that every maximal strict Lie subalgebra L ⊂ Vec(An) of finite
codimension is equal to Vec(An)a for some a ∈ An, so that we have a bijection

An a 7→Vec(An)a−−−−−−−−→
'

{
proper maximal Lie subalgebras
L ⊂ Vec(An) of finite codimension

}
,

see Theorem
main-theoremmain-theorem
1.

1.2. Invariant subvarieties. We shortly discuss the concept of invariant (or in-
tegral) subvarieties with respect to a given set of vector fields and prove some basic
results.

Definition 2. Let D ⊆ Vec(X) be a set of vector fields.

(1) A closed subvariety Y ⊆ X is called D-invariant if ξ(y) ∈ TyY for all y ∈ Y
and all ξ ∈ D. We also say that the vector fields ξ ∈ D are parallel to Y or
that Y is integral with respect to D.

(2) A subspace W ⊆ O(X) is called D-invariant if ξ(W ) ⊂W for all ξ ∈ D.

Remark 2. If ξ is a vector field parallel to Y and f a rational function on X defined
in a neighborhood U of y ∈ Y , then ξ(y)f = ξ(y)(f |U∩Y ). In particular, if f is
regular on X, then (ξf)|Y = ξ|Y (f |Y ).

Let D ⊂ Vec(X) be a set of vector fields.

Lemma 1. If I(Y ) ⊆ O(X) denotes the vanishing ideal of Y , then Y is D-invariant
if and only if I(Y ) is D-invariant.

Proof. If f ∈ I(Y ), then, for y ∈ Y , (ξf)(y) = ξ(y)f = ξ(y)f |Y = 0, hence ξf ∈
I(Y ). Conversely, if ξ(I(Y )) ⊆ I(Y ), then ξ induces a derivation of O(X)/I(Y ) =
O(Y ), and the claim follows. �
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For a closed subvariety Y ⊆ X we can define the Lie subalgebra of the vector
fields on X parallel to Y :

VecY (X) := {ξ ∈ Vec(X) | ξ(y) ∈ TyY for all y ∈ Y } ⊆ Vec(X).

We get a homomorphism of Lie algebras

ρ : VecY (X)→ Vec(Y ), ξ 7→ ξ|Y ,

whose kernel consists of the vector fields onX vanishing on Y . This map is surjective
if X is a vector space, but not in general as one can see from Example

Whitney.exaWhitney.exa
5 below.

embedding.lem Lemma 2. Let X ⊆ An be a closed subvariety. Denote by ∂i ∈ Vec(X) the images
of the ∂xi

and by x̄i ∈ O(X) the images of the xi. Then we have an embedding

Vec(X) ↪→ O(X)n, ξ 7→ (ξ(x̄1), . . . , ξ(x̄n)).

In particular, every vector field ξ ∈ Vec(X) has a uniquely defined representation
ξ = f1∂1 + · · · + fn∂n with fi ∈ O(X). Moreover, Vec(X) is a torsion-free O(X)-
module.

Proof. We have mentioned above that VecX(An)→ Vec(X) is surjective, i.e. every
vector field ξ of X has the form ξ = f1∂1 + · · · + fn∂n with fi ∈ O(X). This
representation is unique, because fi = ξ(x̄i). The last statement is clear. �

Remark 3. It is in general not true that for a closed subvariety Y ⊆ X the induced
surjective homomorphism O(Y )⊗O(X) VecY (X) � Vec(Y ) is an isomorphism. An
example will be given below, see Example

cusp.exacusp.exa
2.

The following lemma can be found in
GrKr2017Endomorphisms-and-
[GK17, Lemma 2.5]. It is essentially due

to Seidenberg
Se1967Differential-ideal
[Sei67].

D-invariant.lem Lemma 3. Let D ⊆ Vec(X) be a set of vector fields.

(1) Sums and intersections of D-invariant ideals are D-invariant.

(2) If I ⊆ O(X) is a D-invariant ideal, then so is
√
I.

(3) If Yλ ⊆ X, λ ∈ Λ, are D-invariant closed subvarieties, then so is
⋂
λ∈Λ Yλ.

(4) If the closed subvariety Y ⊆ X is D-invariant, then every irreducible com-
ponent of Y is D-invariant.

Proof. (1) is clear, and (3) follows from (1) and (2).

(2) It suffices to show that if fn = 0, then (ξf)m = 0 for some m > 0. Let e0 ≥ 0
be the minimal e such that there exists a q ≥ 0 with fe · (ξf)q = 0. If e0 = 0, we
are done. So assume that e0 > 0. Then

0 = ξ(fe0 · (ξf)q) · ξf = e0f
e0−1 · (ξf)q+1 + qfe0 · (ξf)q · ξ2f = e0f

e0−1 · (ξf)q+1,

contradicting the minimality of e0.

(4) It suffices to consider the case where Y = X, hence (0) = p1∩. . .∩pk where the
pi are the minimal primes of O(X). For every i choose an element pi ∈

⋂
j 6=i pj \pi.

Then pi = {p ∈ O(X) | pip = 0}, and the same holds for every power of pi. For
every p ∈ pi we find

0 = piξ(pip) = pi(piξp+ pξpi) = p2
i ξp,

hence ξ(p) ∈ pi. �
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cusp.exa Example 2. Consider the cuspidal curve C := V(y2 − x3) ⊂ K2. Then one shows
that Vec(C) is generated, as an O(C)-module, by 2x̄∂x + 3ȳ∂y and 2ȳ∂x + 3x̄2∂y.
Thus all vector fields vanish in the origin: V(Vec(C)) = {(0, 0)}. One also sees that
the canonical homomorphism O(C) ⊗K[x,y] VecC(A2) → Vec(C) is surjective, but
has a non-trivial kernel.
(In fact, the vector fields ξ := 2x∂x + 3y∂y, η := 2y∂x + 3x2∂y ∈ VecC(A2) generate
VecC(A2) as an K[x, y]-module. Then ȳ ⊗ ξ − x̄ ⊗ η ∈ O(C) ⊗K[x,y] VecC(A2) is a
nonzero element from the kernel.)

no-zeroes.exa Example 3. Let X be an arbitrary affine variety. Then the constant vector field
∂t parallel to A1 has no zeroes, hence V(Vec(X × A1)) = ∅. More generally, if the
vector fields on Y have no zeroes, then the same is true for the vector fields on
X × Y for any X, because any vector field ξ on Y defines a vector field on X × Y
by ξ(f ⊗ h) := f ⊗ ξ(h).

surface.exa Example 4. For the normal surface S := V(x2 + y2 + z2) ⊂ K3 with an isolated
singularity in 0 we find that Vec(S) is generated, as an O(S)-module, by

ξ1 := ȳ∂x − x̄∂y, ξ2 := z̄∂x − x̄∂z, ξ3 := z̄∂y − ȳ∂z,
with the relation z̄ξ1 − ȳξ2 + x̄ξ3 = 0. It follows that all vector fields vanish in the
singular point 0, and the Vec(S) becomes a free module of rank 2 over the open
sets Sx, Sy and Sz.

Whitney.exa Example 5. Consider the Whitney umbrella Y := V(x2−y2z) ⊂ K3. The singular
locus Ysing = VY (x̄, ȳ) is the z-axis, and the vector fields are generated, as an O(Y )-
module, by

ȳ∂y − 2z̄∂z, x̄∂x + 2z̄∂z, ȳz̄∂x + x̄∂y, ȳ2∂x + 2x̄∂z.

They are all parallel to Ysing, and they all vanish in the origin. Thus Ysing is invariant
(see Proposition

Sing-is-invariant.propSing-is-invariant.prop
2 from the next section), and one finds V(Vec(Y )) = {0}. This

shows that the vector field ∂z of the singular locus Ysing ' A1 cannot be lifted to a
vector field on Y , i.e. the restriction map VecYsing

(Y )→ Vec(Ysing) is not surjective.
Sing.sec

1.3. Vector fields and singularities. A first important result due to Seiden-
berg says that the singular locus of an affine variety is invariant under all vector
fields, and that every invariant subvariety is contained in the singular locus.

Localization.lem Lemma 4. Let X be an affine variety.

(1) If f ∈ O(X) is a nonzero element, then we have an isomorphism

O(Xf )⊗O(X) Vec(X)
∼−→ Vec(Xf ).

(2) If X is irreducible, then Vec(X) is a torsion-free O(X)-module of rank equal
to dimX.

(3) If X is smooth, then Vec(X) is a projective O(X)-module.
(4) If x ∈ X is a smooth point, then εx : Vec(X)→ TxX is surjective.

Proof. (1) This follows from the universal properties of Der(R) and of the localiza-
tion Rf . The details are well-known and left to the reader.

(2) Denote by K the field of fractions of O(X). Then K ⊗O(X) Der(O(X)) '
Der(K), and the latter is known to be a free K-module of rank tdegKK = dimX.

(3) Denote by p : TX → X the tangent bundle. This is defined for any (affine) va-
riety, and the sections of p are exactly the vector fields, see

Kr2014Algebraic-Transfor
[Kra16, Appendix A.4.5].
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If X is smooth, then TX → X is a vector bundle, and so the O(X)-module of sec-
tions is projective.

(4) If f ∈ O(X) is nonzero in x ∈ X, then εx : Vec(X) → TxX has the same
image as εx : Vec(Xf )→ TxX. Localizing with a suitable f ∈ O(X), f(x) 6= 0, we
can therefore assume that X is smooth and that the vector bundle TX → X is
trivial, i.e. the O(X)-module Vec(X) is free. Then the claim is clear. �

This has the following consequence.

Invariant-is-singular.prop Proposition 1. If a strict closed subvariety Y $ X is invariant under all vector
fields ξ ∈ Vec(X), then Y ⊆ Xsing.

Proof. We can assume that Y is irreducible (Lemma
D-invariant.lemD-invariant.lem
3(4)). If Y * Xsing, then there

is an open dense subset U ⊆ Y consisting of points which are smooth in Y and
smooth in X. For these points y ∈ U we have TyY $ TyX, contradicting the fact
that the vector fields ξ ∈ Vec(X) span the tangent space TxX in every smooth
point x ∈ X (Lemma

Localization.lemLocalization.lem
4(4)). �

The following result is due to Seidenberg, see
Se1967Differential-ideal
[Sei67].

Sing-is-invariant.prop Proposition 2. For an affine variety X, the singular locus Xsing is invariant un-
der all vector fields.

We give a proof following Siebert, see
Si1996Lie-algebras-of-de
[Sie96, Lemma 4 and Remark 3]. We

start with the following lemma.

Lemma 5. Let I = (f1, . . . , fm) ⊆ K[x1, . . . , xn] be an ideal, and let ξ ∈ Vec(An)
be a vector field such that ξ(I) ⊆ I. Let Jr ⊆ K[x1, . . . , xn] be the ideal generated

by I and all r-minors of the Jacobian matrix
(
∂fi
∂xj

)
i,j

. Then Jr is ξ-invariant.

Proof. If A,B are two r × r-matrices we define by d(A,B) :=
∑r
i=1 detAi where

Ai is obtained from A by replacing the ith row by the ith row of B. We have
d(A,B) =

∑r
j=1 detAj where Aj is obtained from A by replacing the jth column

by the j-column of B. In fact, writing detA as an alternating some of monomials
m := a1i1a2j2 · · · arjr , then d(A,B) is obtained by replacing each m with the sum
of r terms obtained by replacing successively each aiji by biji . Clearly, d(A,B) is
linear in B.

Now let d ∈ K[x1, . . . , xn] be a r-minor of the Jacobian matrix
(
∂fi
∂xj

)
i,j

:

d = detM where M =


∂fm1

∂xn1
· · · ∂fm1

∂xnr

∂fmr

∂xn1
· · · ∂fmr

∂xnr

 =

(
∂fmi

∂xnj

)
i,j=1,...,r

.

For the vector field ξ =
∑
k gk∂k we get ξ(d) = d(M, ξ(M)) where the entries of

ξ(M) are ξ(
∂fmi

∂xnj
) = ξ(∂nj

(fmi
)). We have

ξ(∂j(fi)) = ∂j(ξ(fi))− ∂j(ξ)(fi) where ∂j(ξ) :=
∑
k

∂j(gk)∂k,
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so that ξ(M) = N ′ −N ′′ with N ′ :=
(
∂nj

(ξ(fmi
))
)
i,j

and N ′′ :=
(
∂nj

(ξ)(fmi
)
)
i,j

.

Note that ξ(fi) ∈ I, hence ξ(fi) =
∑
hikfk, and so

∂j(ξ(fi)) =

m∑
k=1

∂j(hik)fk +

m∑
k=1

hik∂j(fk).

Thus N ′ is of the form N ′ = N0 +
∑
kN
′
k where the entries of N0 are in I

and the entries of N ′k are of the form hmik∂nj (fk). It follows that d(M,N0) ∈ I

and d(M,Nk) ∈ Jr. In fact, the ith row of Nk is hmi,k( ∂fk
∂xn1

, . . . , ∂fk∂xnr
) and so

d(M,N ′k) =
∑
i hmikd

′
i where each d′i is an r-minor of the jacobian. By the linear-

ity this shows that d(M,N ′) ∈ Jr.
The argument for the second term is similar, but we have to replace the rows by

columns. We have

∂j(ξ)(fi) =
∑
k

∂j(gk)∂k(fi),

and so N ′′ =
∑
kN
′′
k where the entries of N ′′k are ∂nj

(gk)∂k(fmi
). Therefore, the

jth column of N ′′k is ∂nj (gk)(
∂fm1

∂xk
, . . . ,

∂fmr

∂xk
)t, and so d(M,N ′′k ) =

∑
j ∂nj

(gk)d′′j
where each d′′j is an r-minor of the jacobian. Hence, by linearity, d(M,N ′′) ∈ Jr,
and the claim follows. �

Proof of Proposition
Sing-is-invariant.propSing-is-invariant.prop
2. (1) Let X be irreducible of dimension d = dimX. Fix an

embedding X ⊆ An, and let I(X) = (f1, . . . , fm) ⊂ K[x1, . . . , xn]. Then Xsing is
the zero locus of the ideal J generated by I(X) and the n − d + 1-minors of the

Jacobian matrix
(
∂fi
∂xj

)
i,j

. The previous lemma shows that J is invariant under

all vector fields ξ ∈ Vec(An) such that ξ(I(X)) ⊆ I(X). Hence, Xsing is invariant
under all vector fields of X, because VecX(An)→ Vec(X) is surjective.

(2) If X is reducible and X =
⋃
kX

(k) is the decomposition into irreducible

components, then Xsing =
⋃
kX

(k)
sing ∪

⋃
i 6=j X

(i) ∩ X(j). It follows from (1) and

Lemma
D-invariant.lemD-invariant.lem
3 that each member of this union is invariant under Vec(X), hence the

claim. �

Remark 4. The invariance of the singular locus implies that the Lie algebra Vec(X)
of a singular variety X is not simple, as shown by Siebert. In fact, for I :=
I(Xsing) ⊂ O(X) and for any k ≥ 1 the vector fields LIk are ideals, because Ik is
Vec(X)-invariant. Since

⋂
k LIk = {0}, we have LIk 6= Vec(X) for a large enough

k, hence the claim.
On the other hand, Jordan showed in

Jo1986On-the-ideals-of-a
[Jor86] that if Vec(X) is not a simple Lie

algebra, then there exists an invariant subvariety Y $ X, hence X is singular by
Proposition

Invariant-is-singular.propInvariant-is-singular.prop
1. We will prove this below, following an idea of Siebert.

Smooth-is-simple.prop Proposition 3 (Siebert,
Si1996Lie-algebras-of-de
[Sie96, Proposition 1]). The Lie algebra Vec(X) is sim-

ple if and only if X is smooth.

Proof. Let M ⊂ Vec(X) be a proper nonzero Lie ideal. Then we find a nonzero
O(X)-Lie ideal M ′ ⊆M of Vec(X) by Lemma

O(X)-ideal.lemO(X)-ideal.lem
9 from section

fundamental.secfundamental.sec
1.5 below. It follows

that the ideal I := M ′(O(X)) = 〈ξ(f) | ξ ∈ M ′, f ∈ O(X)〉 ⊆ O(X) is invariant.
In fact, for δ ∈ Vec(X), ξ ∈M ′ and f ∈ O(X) we get

δ(ξ(f)) = [δ, ξ](f) + ξ(δ(f)) ∈M ′(O(X)).
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Clearly, I 6= (0), and we claim that I 6= O(X). Otherwise, we have 1 =
∑
i ξifi for

some ξi ∈M ′ and fi ∈ O(X). But this implies for all δ ∈ Vec(X) that

δ =
∑
i

ξi(fi)δ =
∑
i

[ξi, fiδ]−
∑
i

fi[ξi, δ] ∈M ′,

contradicting the fact that M ′ $ Vec(X). Hence, the zero set of I is a proper
invariant subvariety of X, and the claim follows from Proposition

Invariant-is-singular.propInvariant-is-singular.prop
1. �

1.4. A Galois-correspondence. We shortly describe a Galois-correspondence be-
tween ideals in the coordinate ring O(X) and O(X)-Lie subalgebras of the vector
fields. It turns out that this correspondence restricts to a correspondence between
invariant ideals in O(X) and O(X)-Lie ideals.

Assume again that L ⊆ Vec(X) an O(X)-Lie subalgebra. Recall that LI := {ξ ∈
L | ξ(O(X)) ⊆ I} ⊆ L for an ideal I ⊆ O(X). We thus get a map

Φ: {ideals in O(X)} I 7→LI−−−−→ {O(X)-Lie subalgebras of L}.
Note that Φ(0) = L(0) = (0) and Φ(O(X)) = LO(X) = L. There is also a map in
the other direction, namely

Ψ: {O(X)-Lie subalgebras of L} L 7→IL−−−−→ {ideals in O(X)}
where IL := O(X)L(O(X)) ⊆ O(X). Here we get Ψ(0) = I(0) = (0), whereas
Ψ(O(X)) = IO(X) ⊆ O(X) can be a proper ideal.

The following lemma is easy. It shows that Φ and Ψ define a Galois correspon-
dence between the ideals in O(X) and the O(X)-Lie subalgebras of L.

Lemma 6. (1) If I ⊆ J are ideals in O(X), then LI ⊆ LJ . If Z ⊆ Y ⊆ X are
closed subvarieties, then LZ ⊇ LY .

(2) If L ⊆M are O(X)-Lie subalgebras of L, then IL ⊆ IM .
(3) For an ideal I ⊆ O(X) we have ILI

⊆ I, with equality if I = IL.
(4) For an O(X)-Lie subalgebra L we have L ⊆ LIL , with equality if L = LI .

Thus we obtain a Galois correspondence

{ideals of O(X)}
Φ: I 7→LI

>
<
IL←L :Ψ

{O(X)-Lie subalgebras of L}

where Φ and Ψ induce bijections between the images of Φ and of Ψ.

Proof. (1) and (2) are clear.

The first part of (3) follows from L(O(X)) ⊆ IL, and the first part of (4) from
LI(O(X)) ⊆ I.

For L = LI we have that L ⊆ LIL by (3), and IL ⊆ I by (4), and so LIL ⊆ LI =
L by (1), and the second claim of (3) follows. The second claim of (4) is obtained
in a similar way. �

The next lemma shows that the Galois correspondence above restricts to a Galois
correspondence

{L-invariant ideals of O(X)}
Φ: I 7→LI

>
<
IL←L :Ψ

{O(X)-Lie ideals of L}

Lemma 7. (1) If L ⊆ L is an O(X)-Lie ideal, then IL ⊆ O(X) is an L-
invariant ideal.
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(2) If I ⊆ O(X) is an L-invariant ideal, then LI ⊆ L is an O(X)-Lie ideal.

Proof. (1) Let f ∈ IL and δ ∈ L. We have to show that δ(f) ∈ IL. By definition,
f =

∑
i ξi(fi) for some ξi ∈ L and fi ∈ O(X). Hence

δ(f) =
∑
i

δ(ξi(fi)) =
∑
i

[δ, ξi](fi) +
∑
i

ξi(δ(fi)) ∈ L(O(X)) = IL.

(2) Let δ ∈ L and ξ ∈ LI . Then

[δ, ξ](f) = δ(ξ(f))− ξ(δ(f)) ∈ I

for every f ∈ O(X), hence [δ, ξ] ∈ LI . �
fundamental.sec

1.5. The Fundamental Lemma. In this section we prove a kind of “Nullstel-
lensatz”, namely a relation between maximal Lie subalgebras of the vector fields
and the points of the variety X. A central result is the following lemma which is a
variation of results due to Grabowski (see

Gr1978Isomorphisms-and-i
[Gra79]).

max-LA.lem Fundamental Lemma. Let L ⊆ Vec(X) be O(X)-Lie subalgebra, and let L ⊂ L
be a maximal proper Lie subalgebra of finite codimension. Set I := {f ∈ O(X) |
f · L ⊆ L}. Then we have the following.

(1) I 6= (0), and I is L-invariant.
(2) If V(I) ⊆ X is not L-invariant, then I is a maximal ideal m, and L = Lm.
(3) If Lx 6= L for some x ∈ X, then Lx is a proper maximal Lie subalgebra.

Proof. (1) Setting L′ := {δ ∈ L | [δ,L] ⊆ L}, the following Lemma
transporter.lemtransporter.lem
8 shows that for

δ, f · δ ∈ L′ we have δ(f)2 ∈ I. Since L′ ⊆ L has finite codimension, it follows that
for every ξ ∈ L the subspace {f ∈ O(X) | f ·ξ ∈ L} ⊆ O(X) has finite codimension.
On the other hand, ker ξ ⊂ O(X) has infinite codimension if ξ 6= 0, because the
image contains with ξ(f) the span 〈fnξ(f) | n ∈ N〉. Therefore, for every ξ ∈ L′,
ξ 6= 0, there is an f ∈ O(X) such that ξ, f · ξ ∈ L′ and ξ(f) 6= 0. Hence, I 6= (0).

For ξ ∈ L, δ ∈ L and f ∈ I we have

[δ, f · ξ] = δ(f) · ξ + f · [δ, ξ] ∈ L,

showing that δ(f) · L ⊆ L, hence δ(f) ∈ I for all δ ∈ L and f ∈ I. This means that
I is an L-invariant ideal.

(2) It follows from (1) and Lemma
D-invariant.lemD-invariant.lem
3 that

√
I is L-invariant, as well as every

minimal prime p ⊇ I. Hence

L ⊆ L(I) := {ξ ∈ L | ξ(I) ⊆ I} ⊆ L(
√
I) ⊆ L(p).

Since
√
I is not L-invariant, we have L(p) 6= L for at least one of the minimal

primes p ⊃ I, and so L = L(p), because L is maximal. This implies that I is the
annihilator of the O(X)-module L/L(p). Since the latter is finite dimensional, we
see that I ⊂ O(X) has finite codimension, and so p is a maximal ideal, p = mx.
But then L(mx) = Lx, because O(X) = K⊕mx, and so L = Lx as claimed.

(3) Assume that Lx ⊆ L $ L. Then the ideal I is equal to mx, because mxL ⊆ Lx,
and so L = Lx. �

The next lemma is formulated in
Si1996Lie-algebras-of-de
[Sie96, Lemma 1] and is contributed to

Am1975Lie-algebra-of-vec
[Ame75].

We will give a short proof.
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transporter.lem Lemma 8. Let L ⊆ Vec(X) be O(X)-Lie subalgebra, and let L ⊆ L be a Lie
subalgebra. Set L′ := {δ ∈ L | [δ,L] ⊆ L}. If δ ∈ L′ and f · δ ∈ L′ for some
f ∈ O(X), then δ(f)2 · L ⊆ L.

Proof. Let δ, f · δ ∈ L′. Then, for any ξ ∈ L, we get

[f · δ, ξ] = f · [δ, ξ]− ξ(f) · δ ∈ L and

[δ, f · ξ] = f · [δ, ξ] + δ(f) · ξ,
hence

(∗) δ(f) · ξ + ξ(f) · δ ∈ L.
Substituting in (∗) ξ by ξ(f) · δ we get 2δ(f)ξ(f) · δ ∈ L, and substituting ξ by
δ(f) · ξ we find δ(f)2 · ξ + ξ(f)δ(f) · δ ∈ L. Thus δ(f)2 · ξ ∈ L. �

The lemma has another consequence which we used earlier in the proof of Propo-
sition

Smooth-is-simple.propSmooth-is-simple.prop
3.

O(X)-ideal.lem Lemma 9. A nonzero Lie ideal of L contains a nonzero O(X)-Lie ideal.

Proof. Let M ⊂ L be a Lie ideal.

(a) We first claim that the maximal O(X)-submodule M ′ ⊂M is a Lie ideal. In
fact, if f ∈ O(X), δ ∈M ′ and ξ ∈ L, we get

f · [ξ, δ] = [ξ, f · δ]− ξ(f) · δ ∈M,

hence [ξ, δ] ∈M ′.
(b) Now consider the ideal I := {f ∈ O(X) | f · L ⊆ M}. If I 6= 0, then

I · L ⊂M is a nontrivial O(X)-submodul, and the claim follows by (a). For δ ∈M
and f ∈ O(X) we have δ(f) · δ = [δ, f · δ] ∈ M , hence δ(δ(f))2 ∈ I by Lemma

transporter.lemtransporter.lem
8.

Choosing an embedding X ⊆ An and setting δ =
∑
i gi∂i, we find δ(x̄i) = gi. If

δ(gi) 6= 0, we are done. If δ(gi) = 0, then δ(x̄2
i ) = g2

i , and we are also done. �
max-LA.sec

1.6. Reconstructing points from Vec(X). Here we will show that one can re-
construct the smooth points of a variety X from the vector fields using only the
Lie algebra structure of Vec(X).

If L ⊆ L is a Lie subalgebra we denote by L[∞] ⊆ L the maximal Lie ideal of L
contained in L. This notion has the following geometric interpretation.

Proposition 4. (1) If L is an O(X)-Lie subalgebra, then L[∞] is an O(X)-Lie
ideal of L.

(2) Let Y ⊆ X be an irreducible closed subvariety, and let Z ⊆ X be the smallest

closed L-invariant subvariety containing Y . Then L[∞]
Y = LZ .

Proof. (1) If M ⊆ L is an ideal, then O(X) ·M is also an ideal. In fact, for δ ∈ L,
µ ∈M and f ∈ O(X) we get

[δ, f · µ] = δ(f) · µ+ f · [δ, µ] ∈ O(X) ·M.

(2) Since ILY
= I(Y ) is a prime ideal, we have IL[∞]

Y

⊆
√
IL[∞]

Y

⊆ I(Y ). More-

over,
√
IL[∞]

Y

= I(Z ′) where Z ′ ⊃ Y is an L-invariant closed subvariety of X, hence

Z ⊆ Z ′. It follows that

L[∞]
Y ⊆ LI

L[∞]
Y

⊆ LZ′ ⊆ LZ ⊆ LY ,
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and so L[∞]
Y = LZ , because of the maximality of L[∞]

Y . �

max.cor Corollary 1. Assume that X is irreducible, and let x ∈ X.

(1) If Lx 6= L, then L[∞]
x has infinite codimension.

(2) If x is a smooth point of X, then L[∞]
x = (0).

(3) If x ∈ Xsing and Lx 6= L, then L[∞]
x 6= (0).

(4) Let L ⊂ L be a proper maximal Lie subalgebra different from Lx for any
x ∈ X. Then L[∞] 6= (0).

Proof. Denote by Z ⊆ X the smallest L-invariant subvariety containing x. Then

L[∞]
x = LZ by the proposition above.

(1) Since there are vector fields in L which do not vanish in x, we see that dimZ ≥
1. Since L/LZ is an O(Z)-Lie subalgebra of Vec(Z), it has infinite dimension.

(2) If x ∈ X is a smooth point, then Z = X by Proposition
Invariant-is-singular.propInvariant-is-singular.prop
1 from the next

section. Hence L[∞]
x = LX = (0).

(3) If x ∈ Xsing, then Z ⊆ Xsing $ X and so L[∞]
x = LZ ⊇ LXsing

6= (0).

(4) Define I := {f ∈ O(X) | f · L ⊆ L}. It follows from Lemma
max-LA.lemmax-LA.lem
1.5 that I is a

nonzero ideal of O(X) and that
√
I is L-invariant. Then there is an m ≥ 1 such

that J := (
√
I)m ⊆ I. Since J is L-invariant it follows that J · L ⊆ L is a nonzero

O(X)-Lie ideal, hence L[∞] 6= (0). In fact, for δ, ξ ∈ L and f ∈ J we have

[δ, f · ξ] = δ(f) · ξ + f · [δ, ξ] ∈ J · L,
hence the claim. �

We now show how one can reconstruct the (smooth) points of X from the Lie
algebra Vec(X).

main-theorem Theorem 1. (1) Assume that X does not contain a proper L-invariant subva-
riety. Then the map x 7→ Lx gives a bijection

X
'−−−−→ Max(L) :=

{
proper maximal Lie subalgebras
L ⊂ L of finite codimension

}
,

(2) If X is irreducible, then the map x 7→ Vec(X)x defines a bijection

X \Xsing
∼−→ Max0(Vec(X)) :=

{
proper maximal Lie subalgebras L ⊂ Vec(X)
of finite codimension such that L∞ = (0)

}
.

Proof. (1) Since L(O(X)) = O(X) we see that Lx is a proper Lie subalgebra of
finite codimension. The Fundamental Lemma implies that Lx is maximal for any
x ∈ X, and that every maximal proper Lie subalgebra is of this form.

(2) Set L := Vec(X). If x ∈ X is a smooth point, then Lx 6= L (Lemma
Localization.lemLocalization.lem
4(4)),

hence is a maximal proper Lie subalgebra by the Fundamental Lemma, and L[∞]
x =

(0) by Corollary
max.cormax.cor
1(2). Hence, the map x 7→ Lx sends the smooth point into

Max0(Vec(X)).
Now let L ∈ Max0(Vec(X)). Then part (3) and (4) of Corollary

max.cormax.cor
1 imply that

L = Lx for a smooth point x ∈ X. �

In
Si1996Lie-algebras-of-de
[Sie96] there are several variants of the theorem above. For example, it was

already shown by Grabowski that (1) holds under the more general assumption
that L has no zeroes. An example of such a variety is X := C × A1 where C =
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V(y2−x3) ⊂ K2, see Example
no-zeroes.exano-zeroes.exa
3. In fact, the vector field ∂z does not vanish anywhere

on the singular locus Xsing = {(0, 0)} × A1.

1.7. Regular functions. In this last section we define regular functions on the set
of maximal proper Lie subalgebras of Vec(X) using only the Lie algebra structure of
Vec(X). With the relation between points of X and maximal proper Lie subalgebras
proved in the previous section, we then show that for a normal variety X, these
functions coincide with the regular functions on X. This implies that a normal
affine variety X is determined, up to isomorphism, by the Lie algebra Vec(X).

From now on we assume that X is irreducible. Consider the open dense set
X ′ := X \Xsing of smooth points of X. We have seen in Theorem

main-theoremmain-theorem
1(2) that there is

a bijection X ′
∼−→MX := Max0(Vec(X)), given by x 7→ Lx. Note that

⋂
L∈MX

L =

(0), because any ξ from the intersection vanishes on X ′, hence on X.

Definition 3. A K-valued function f : MX → K is called regular if the following
holds:

For every δ ∈ Vec(X) there is a µ ∈ Vec(X) such that f(L)δ − µ ∈ L for all
L ∈MX .

We denote by R(MX) the set of regular functions on MX .

reg-functions.prop Proposition 5. (1) The set R(MX) is K-algebra.
(2) L is stable under R(MX).
(3) R(MX) contains O(X) and consists of rational functions defined on X ′.
(4) If codimX Xsing ≥ 2, then R(MX) is a finite extension of O(X).

Proof. Set L := Vec(X).

(1) Let f1, f2 ∈ R(MX) and δ ∈ L. Then there exist µ1, µ2 such that fi(L)δ −
µi ∈ L for all L ∈ MX , i = 1, 2. Therefore, (c1f1 + c2f2)(L)δ − (c1µ1 + c2µ2) ∈ L,
hence c1f1 + c2f2 ∈ R(MX). There exists also µ3 ∈ L such that f2(L)µ1−µ3 ∈ L,
hence (f1f2)(L)δ − µ3 = f2(L)(f1(L)δ − µ1) + (f2(L)µ1 − µ3) ∈ L, and so f1f2 ∈
R(MX).

(2) For f ∈ R(MX) define f · δ := µ if f(L)δ − µ ∈ L for all L ∈ MX . This is
well-defined, because

⋂
L∈MX

L = {0}.
(3) For f ∈ O(X), x ∈ X ′ and L = Lx ∈ MX we define f(L) := f(x). This is a

regular function on MX . In fact, if δ ∈ L and µ := f · δ, then f(x)δx = µx for all
x ∈ X, and so f(Lx)δ − µ ∈ Lx for x ∈ X ′.

We fix an embedding X ⊆ Kn, so that every vector field ξ ∈ Vec(X) can be
written as ξ =

∑n
i=1 gi∂i with uniquely defined fi ∈ O(X) (see Lemma

embedding.lemembedding.lem
2). If

f(L)δ − µ ∈ L for all L ∈MX and if we write δ =
∑
gi∂i and µ =

∑
hi∂i, then

f(Lx)gi − hi = (f(Lx)δ − µ)(x̄i) ∈ mx for x ∈ X ′,

i.e. f = hi

gi
is a rational function on X which has no poles on X ′.

(4) If codimX X \X ′ ≥ 2 and if X̃ → X is the normalization, then the pullback r̃

of a rational function r onX with no poles onX ′ is regular. HenceR(MX) ⊆ O(X̃),
and thus is a finite extension of O(X). �

As a consequence we get the following result due to Siebert
Si1996Lie-algebras-of-de
[Sie96, Corollary 3].

Theorem 2. Let X,Y be normal affine varieties. If there is an isomorphism
Vec(X)

∼−→ Vec(Y ) of Lie algebras, then X ' Y as varieties.
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Proof. The isomorphism Vec(X)
∼−→ Vec(Y ) of Lie algebras induces a bijection

ϕ : MX = Max0(Vec(X))
∼−→ MY = Max0(Vec(Y )). The definition of regular

functions above shows that ϕ induces an isomorphism ϕ∗ : R(MY )
∼−→ R(MX) of

K-algebras. Now it follows from part (3) and (4) of Proposition
reg-functions.propreg-functions.prop
5 that R(MX) =

O(X) and R(MY ) = O(Y ), and the claim follows. �

Remark 5. It follows from the construction and the proof above that for normal
varieties X,Y every isomorphism Vec(X)

∼−→ Vec(Y ) of Lie algebras is induced by

an isomorphism X
∼−→ Y .
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