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1. INTRODUCTION 

1.1. In a recent paper [LS] Levasseur and Smith have shown that the 
S-dimensional nilpotent conjugacy class in the simple Lie algebra g of type 
G2 has a non-normal closure. In the following we give a short proof of this 
result and show that all other classes have a normal closure. This com- 
pletes the geometric picture in the spirit of the work [KPl, KP2, KP3], 
which deals with the case of the classical groups. 

1.2. THEOREM. ’ Let g be the simple Lie algebra of type G, and let Ci be 
the nilpotent conjugacy class in g of dimension i = 6, 8, 10, and 12. 

(a) Every conjzrgacy class of g except C, has a normal closure with 
rational singt4laritie.s. 

(b) [Levasseur and Smith] c, is not normal in G = G\C,. The nor- 
- 

malization qs : C8 + q is bijective and C, has an isolated rational singularitJ7 
in q;‘(O). 

(c) C12 has a singularity of type D, in C,O, and C,0 a singularity qf 
type A, in C,. 

The proof of these results is based on the same construction as in [LS]: 
We embed g into so, by the 7-dimensional standard representation, and 
study the g-equivariant projection p: so, -+ g. It turns out that the restric- 
tion of p to the 8- and lo-dimensional nilpotent conjugacy classes D, and 
D,, in so7 induces finite surjective morphisms 

-- -- 
ps:D,-+C, and PIO: D,o + C,o. 

The result then follows from a careful analysis of these two maps. 

* Partially supported by Schweizerischer Nationalfonds. 
’ In a preliminary version of this paper under the title “Non-normality of Closures of 

Conjugacy Classes in G,” the statement of this the&rem is not correct. 
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1.3. Remark. The simple group G2 also has an exceptional behavior 
with respect to the sheets in its Lie algebra g (cf. [Krl], [BK], or [B] for 
definitions). One of the two subregular sheets through Cl0 is smooth, the 
other is not normal and C,, undergoes a threefold covering in the nor- 
malization of that sheet [Sl, p. 151; BK, 7.3 Beispiel b]. 

Comentions. The base field k is algebraically closed of characteristic 
zero. If X is an algebraic variety we denote by k[X] the algebra of global 
regular functions on X. 

2. NILPOTENT CONJUGACY CLASSES IN G, 

2.1. Let G be a simple group of type G,. Fix a maximal torus T and a 
Bore1 subgroup B 3 T and denote by Mu, CI? the corresponding base of the 
root system 0 with respect to T, where c(~ is a short and CI* a long root. 
The nilpotent cone of the Lie algebra g := Lie G consists of five conjugacy 
classes C,,, C,,, G, C,, and Co= (0) with dimensions dim Ci= i. C6 as 
the conjugacy class of a long root vector x2~g12, C8 the class of a short 
root vector x1 E g,, , C,, the class of -x2 + xi, where X; E gXa, + 12 is another 
long root vector, and C,, the class of sI + .Y*. CL2 is the regular class, C,, 
the subregular class, and we have c 3 Cj for i 3 j. (Cf. [§K] ) 

2.2. The long root vectors generate the subalgebra 

of g which we will identify with 4,. It is easy to see that g decomposes as 
an sl,-module in the form 

g = sl, @ k3 0 (k3)*. 

We can therefore consider SL, as a subgroup of 6. 

2.3. Remark. Let H := G, be the centralizer of s := .x2 + xi E C,,. Tt is 
known that HO is unipotent and that H/Ho ‘v sl;, the symmetric group in 
three letters (see [Ca, table on p. 4011). We will only need that H contains 
the center Z Y Z/32 of SL, and that 

Lie H = g,, + I2 0 gza, + 3L2 0 g3%, c 2a2; 

this is obvious from what we have said above. 

2.4. Remark. The centralizer of .x1 E C, is connected (see [Ca, table on 
p. 4011). 
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3. THE STANDARD REPRESENTATION OF G, 

3.1. Let p: G -+ GL( V) be the 7-dimensional irreducible representation 
with highest weight o, = 2cr, + LYE. This representation is orthogonal, and 
the invariant quadratic form 4: V --) k generates the algebra k[ V]’ of 
G-invariant polynomials on V. The zero cone I’” := q-l(O) consists of two 
orbits, (0) and Gu,,, where u0 E V,, is a highest weight vector. (As usual we 
denote by VP the weight space of V of weight 8.) 

The representation p defines an embedding G 4 SO,. The adjoint 
representation of G on so7 is isomorphic to A* V and decomposes in the 
form 

,,,=A V-g@ v. 

(This is clear from dimensional reason.) 
The weights of V are the zero weight and the short roots of g, all with 

multiplicity one. Hence we have 

vz k@k3@ (k’)* 

as an SL,-module. 

3.2. LEMMA. Let L’~E Vcso7 be a highest weight vector of V. As an 
element qf so7 the endomorphism v0 is nilpotent with partition (3, 2, 2). 

(The partition of a nilpotent endomorphism is given by the sizes of the 
blocks in a Jordan normal form.) 

Proof The highest weight of V is o , := 2a, + LX*, and the corresponding 
weight space in A’ V is 2-dimensional: 

Since a highest weight vector v0 E V c A’ V is annihilated by g,, and gaZ we 
see that v0 has non-zero components in both summands: 

270 = w(J A w* + 11’1 A M’), 

Furthermore, the G-isomorphism 0: Vs V* satisfies a( VP) = (V-,j* for 
all weights /?. It follows that the composition 
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maps the element 

to an element of the form 

with non-zero elements LZ~~E(I’~)*, K~,E(v_,,)*, E~~~E(V~~~,-.~~~*, 
-, --3 E (V- -=,)*. It is now easy to see that It’ is a nilpotent element of 
End V witl? partition (3, 2, 2). 1 

4. THE FUNDAMENTAL CONSTRUCIION 

4.1. The nilpotent cone of so7 consists of the conjugacy classes D,,, D,,, 
D,,, D,,, D,,, D,, and D,= {O} of dimensions dim Di=i. They are com- 
pletely determined by their conjugacy class in M,(k) with respect to 
G&(R) and correspond to the partitions (7), (5, I, l), (3, 3: lj, (3, 2, 2) 
(3? 1” j, (2, 2, 13), and (1 7). (For this and the following see [KP3, Sect. 19 
tables].) We have q=, D.i for i Z j, and all Di except D,, have a normal 
closure 0, with rational singularities. 

Consider the G-linear projection p: so, + g given by the decomposition 
so7 = g@ Y (see Section 3). 

4.2. PROPOSITION. The map p induces finite suqective morphisms 

ps:D,+q 
-- 

and Plo: D,, + Cl,. 

The morphism ps is bijective, but it is not an isomorphism in the points C$ 
p8-‘(G) (i.e., the fibres over these points are not reduced). 

ProoJ: By the lemma above we have D 1,, n V= i& n V= (0). Since the 
closures z are closed G-stable cones in so, it follows that the images - 
X, := p(K) and X,, := p(D,,) are closed and G-stable cones in g and that - 
the maps p8: ?&+X8 and plO: D10 + Xl0 are iinite morphisms. In fact, 
given a finitely generated graded algebra, R = ej Ri with R, = k and a 
graded subalgebra S = @ i Si such that J RS + = R + , where R + and S+ 
are the homogeneous maximal ideals of R and S, then R is a finitely 
generated S-module (see, for example, [Kr2, 11.4.3 Satz S] and its proof). 
But C, and C8 are the only conjugacy dasses in g of dimension 6 and 8, 
all other classes have dimension > 10 (see Section 2). Hence X8 = ?$, and -. 
X,, contains a .dense lo-dimensional conjugacy class and so X1, = C,,. 
Since the centralizer of .x, E C8 is connected (Remark 2.4) the map p8 is 
birational. 

4811126/2-14 
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Let x2 E C, be a long root vector as in Section 2. We claim that 
Psw= Kb 0)} c g@ V. In particular p;‘(G) + G is bijective. In 
fact, consider the B-stable line kxz c g. Then p; ‘(kx,) is finite union of 
lines, each one stable under B. Since there are only two B-stable lines in 
so79 namely k(x,, 0) and the highest weight space of V, the claim follows. 

Next we show that the libre pc1(x2) is not reduced. In fact, the libre 
p;‘(x,) is the schematic intersection of D, with (x2} x V. For the tangent 
spaces we find 

T (.x2,0) DS= Lx,23 SO71 = [~~2~~10 C-x2, VI. 

Since [x2, V] # (0) the intersection D, n (?cz, V) is not transversal, hence 
the libre p;‘(xJ is not a reduced point. 1 

4.3. Remark. Every nilpotent class Ci c g generates a nilpotent class in 
so,, via the embedding gqso, (3.1). From the explicit description of the 
nilpotent classes Ci in 2.1 it is easy to determine the nilpotent 
endomorphism of V induced by x E Ci; e.g., a short root x2 E g defines an 
endomorphism with partition (3,2,2) and a long root x2 E g one with 
partition (2, 2, 13). Using 4.1 we find the following inclusions: 

GcD,, CxcDu, Cl, = DM, C,z = D,,. 

5. MULTIPLICITIES 

5.1. For any G-variety X we denote by mult,(X) the multiplicity of 
an irreducible representation A4 in the algebra k[X] of global regular 
functions on X, i.e., 

mult,(X) = dim, Mor,(X, M*), 

where Mor,(X, h1*) is the k-vectorspace of G-equivariant morphisms 
X -+ M* into the dual module M* of M. If X is a G-orbit, X 2: G/H, we 
obtain 

m&,(X) = dim(M*)H (Frobenius reciprocity). 

Now let Cc g be a conjugacy class and C its closure in g. Since the com- 
plement C\C is of codimention 22 we have the following result due to 
Kostant ([Ko, 2.2 Proposition 91; cf. [BK]): 

PROPOSITION. The closure c of the conjugacy class C is normal if and 
only if mult,(C) = mult,( C) for all irreducible representations M of G. 
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5.2. For the proof of the normality of ??& we will need to know the multi- 
plicities of the representations V and W of highest weight w1 and 20, in 
k[ICi,l. 

LEMMA. For the representations V and W of highest weight ml and 213, 
rue have 

mult.(C,,)=O and mult,(C,,) < 1. 

ProoJ: We know that Cl0 is the conjugacy class of x=x2 +x6 (nota- 
tions of 2.1). By Frobenius reciprocity (5.1) we have to show that 

vH=o and dim WH< 1, 

where H= G, is the centralizer of x. (Remember that V and W are 
selfdual. j 

Let 7-J c G be the unipotent subgroup with Lie algebra 

Lie U = k., + b2 0 gza, + c(2 0 g3a, + 2a2. 

We know that U c H (Remark 2.3). Since U is normalized by the maximal 
torus T the fixed point set V” is a sum of weight spaces. In fact, it is easy 
to see that 

Now the center Z of SL3 belongs to H, too (Remark 2.3). Since every short 
root B is non-trivial on Z we obtain 

VHC (V”)“=O, 

proving the first claim. 
The second symmetric power S*(V) of V contains the irreducible 

representation W, which is of dimension 27, hence S2( V) CC k@ W as a 
G-module. It follows that the weights in W are 0, c(i) CI~, 2cl, and their 
conjugates under the Weyl group, and their multiplicities are given by 

dim IV, = 3, dim W,, = 2, dim Wxz= 1, dim W22, = 1. 

It is easy to see that 

We claim that W” n W, = 0, and therefore 

w”‘c w,,+.,o ..’ 0 w3.,+20ry 
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In fact, if we W, is annihilated by gg, it is also annihilated by g-,. It 
follows for an element WE wc’n W,, that ggo = 0 for every short root /I, 
hence 1~’ is annihilated by all of g, and the claim follows, 

Considering now the action of the center Z of SL, the same argument 
as above applies and shows that 

proving the second claim. [ 

- 
6. NORMALITY OF Cl0 

6.1. We want to calculate the schematic fibre of 0 E G under the finite - 
surjective morphism pi0 : DiO --, c,o (4.2). By construction, p;‘(O) is the - 
schematic intersection D,, n V, hence of the form Spec k[ VI/J, where J is 
a graded G-stable ideal whose radical is the homogeneous maximal ideal of 
H VI. 

6.2. LEMMA. The ideal J contains the inoariant q and all homogeneous 
elements of degree > 3. In particular, the only representations possibly 
occurring in k[ VI/J are k, V, and W. 

ProoJ: Clearly qE J since q is the restriction of the non-degenerate 
quadratic invariant gEk[so7]S07 to VC so,, and q vanishes on D,,. 
Furthermore, the elements of zc so7 are endomorphisms of rank d 2 
(see 4.1). Hence the 3 x 3-minors generate a so,-stable subvectorspace 
Mc k[so,] of homogeneous polynomials of degree 3 vanishing on K. -. 
More precisely D,, is the zero set of M together with all homogeneous 
SO,-invariant functions on so7. These invariants restrict to multiples of q - 
on V (3.1). Since D,,n V= {O> this implies that q and the restriction 
A := MI y generate an ideal of finite index in k[ V]. 

Now the zero fibre q-‘(O) c V is the closure of the orbit of a highest 
weight vector, hence k[q-‘(0)] z oia0 Vi as a G-module, where Vi is 
simple of highest weight io, [VP, Theorem 21. It follows that 

kCv1 =k[qlO @ Vi 
i20 

as a G-module because q is an irreducible polynomial and V a free k[q]- 
module (cf. [Ko]). In particular, 

k[VJ,=k, kCV1, = K k[ V-J1 = kqQ W, k[ VI3 = qV0 V3, 
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where k[ P’ld is the homogeneous component of k[ V] of degree d. Now 
A c k[ V] 3 is G-stable and &? & 41’; since q and i@ generate an ideal of 
finite index, as we have seen above. Hence X?Z V, and so 

6.3. Proof of Normality. 
-. Now we want to show that C,, IS normal. Let 

-- 
g: C,, -+ C,, be the normalization. Since D,, is normal [KP3, Sect. l? 
tables], we get a factorization 

with a finite surjective morphism z In terms of coordinate rings this 
means that we have finite extensions 

Next we show that k[G] is a direct summand of k[D,,]. By Frobenius 
reciprocity (5.1), the second inclusion is of the form k[G]H’ck[G]H’ with 
subgroups H, c H, c G, and k[GIH1 ck[G]g=k[G]@. Now there is a 
finite subgroup Fc H, such that H,= F. HP, hence k[G]“‘= (k[G]$)‘. 
This implies that k[G] H2 is a direct summand of k[G]@, and therefore 
k[G] is a direct summand of k[D,,]. 

As a consequence of this we see that the schematic fibre II-‘(O) = Spec R 
is given by a G-stable subalgebra Rc k[ VI/J (notations of 6.1). We have 

to show that R = k. But mult .(G) = mult L,( ClO) = 0 by Lemma 5.2 and so 

I/ cannot occur in R. Also mult w(G) = mult J C,,) < 1 (Lemma 5.2) and 
mult,(C,,) > 1 by the lemma below. This shows that R does not contain 
W either, proving our claim. 1 

6.4. LEMMA. The map so, -+ M,(k), X- X2, induces a nowtrivial G- 
equitlariant morphism c,, --+ V. In particular mult [,(G) > 1. 

Proof It follows from Lemma 3.2 that the map so, -% M,(k) is non- 
zero on ClO. Its image lies in Sym,, the symmetric matrices in M,(k), and 

Sym, c S’V= V@k 

as a G-module. If we compose the G-equivariant map 

A:gciso,?z‘Sym, 
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with the projection onto k we obtain a quadratic invariant, hence a multi- 
ple of q2, which vanishes on all nilpotents. It follows that the composition 
of /z with the other projection, the one onto V, induces a non-trivial 
covariant C,, + V. 1 

7. END OF PROOF OF THEOREM 1.2 

We first remark that all non-nilpotent conjugacy classes have a normal 
closure with rational singularities: Every such closure is a G-libre bundle 
over a semisimple class, whose libre is the closure of a nilpotent class in 
some strict Levi subalgebra of g (see [Sl, Lemma 3.101). The regular class 
Cl2 has a normal closure with rational singularities [Ko, Hell) and the 
singularity of G in Cl,, is of type D4 (see [Sl]). The minimal class C, has 
a normal closure G= C, u (0) with rational singularities [Ke]. 

In the preceding section we have already shown that G is normal. In 
addition, we have seen in Section 4 that CrOc D,, and that Cs c D,2 
(Remark 4.3). Since G is normal and since the codimensions of C8 in c,, - 
and of D,, in D,, are equal we can apply [KP3, Corollary 13.31. This -. 
result states that G has in C, a singularity of the same type as D,, m DIz, 
which is a singularity of type A, [KP3, Sect. 19 tables]. 

Now DIO is normal with rational singularities (4.1). Applying Boutot’s - 
theorem [Bo] to the finite morphism plO: D,, -+ G it follows that G has 
rational singularities, too. (In fact we have seen in 6.3 that the coordinate - 
ring k[G] is a direct summand of k[D,,].) 

Finally, z= D, u (0) is normal with an isolated rational singularity in 
0 (4.1). Therefore the bijective morphism p8 : 08 + G (Proposition 4.2) is 
the normalization. This finishes the proof of the theorem. 

8. SURVEY OF RESULTS ON THE NORMALITY PROBLEM 

In this last section we give a brief summary of what is known about 
normality of closures of conjugacy classes in reductive groups. 

8.1. Reduction to the Simple Case. Let G be a reductive group and 
g = Lie G its Lie algebra. A conjugacy class C in G (or in g) is of the form 
G *H c’, where HE G is a Levi subgroup and C’ c Lie H a nilpotent 
conjugacy class, and the closure zi of C is isomorphic to G *H c’ (cf. [Sl, 
11.3.101 or [KP3, 0.21). Furthermore, a class Cc g, @gZ is a product 
C, x C, of two classes, and its closure is c, x c. This reduces the problem 
to the study of nilpotent classes in simple Lie algebras. 
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Recall that a semisimple group contains only finitely many nilpotent 
conjugacy classes, and every conjugacy class has even dimension (cf. 
WI 1. 

8.2. Some General Normality Results. Kostant showed in his fundamen- 
tal paper [Ko] that the nilpotent cone in g, which is the closure of the 
regular nilpotent class Greg , is a normal complete intersection, and 
Hesselink proved that it has rational singularities [Hell. 

For the minimal class Cmin, i.e., the orbit of highest weight vectors in g, 
a general result of Vinberg and Popov [VP] implies that the closures 
Cmin = Cmin u (O ) are normal, and it follows from Kempf [Ke] that it has 
rational singularities. 

Using Serre’s normality criterion Hesselink showed that certain classes in 
SL, can be obtained as normal complete intersections in determinantal 
subvarieties of g defined by rank conditions [He2, 1.21. Hence they are 
normal and Cohen-MacaulaJ>. In addition, using resolution of singularities 
and [Ke] he discovered several “small” nilpotent classes in sl,, so,, 
and sp,, and in the exceptional Lie algebras besides the regular and the 
minimal class which have a normal closure with rational singularities, e.g., 
one in F4, one in E6, two in E,, and one in E,. 

Brieskorn studied the singularity of the nilpotent cone in the subregular 
class (this is the only class of codimension 2) in case of a simple Lie algebra 
of type A, D, and E and showed that it is equivalent to a simple surface 
singularity of corresponding type (cf. Slodowy’s book [Sl], where this is 
extended to all simple Lie algebras). 

8.3. Special Linear Groups. In these groups the closure of every con- 
jugacy class is normal and has rational singularities [KPl]. There is a 
simple algorithm in terms of the partition associated to a nilpotent class C 
to determine the classes occurring in the closure C. Also one can read from 
the partition the type of the singularity of 2; in the open classes in the 
boundary X := ci\C, the so-called minimal singularities of C [KP2]. This 
generalizes the results of Brieskorn and Slodowy (8.2 j, 

8,4. Orthogonal and Symplectic Groups. For these groups and their Lie 
algebras there exist conjugacy classes with non-normal closures [KP3]. 
Again the partition of a nilpotent conjugacy class C determines which 
classes appear in the closure C, the type of the minimal singularities, 
and whether C is normal or not, except for the so-called tiery even 
classes. (These are the conjugacy classes in sod,, which are not stable under 
the full orthogonal group O,,.) There are partial results about Cohen- 
Macaulayness and rational singularities. 

It is interesting to remark at this point that the non-normal closures 
c are always branched in codimension 2, i.e., there is a class D c T of 
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codimension 2 which undergoes a 2-fold covering in the normalization 
q: c + c. As we have seen in 1.2 this is not the case for the class C, in G,. 

8.5. Branched Non-normality (Beynon and Spaltenstein). In the paper 
[BS, Sect. 5(E)] one finds the following result (based on a remark of 
Verdier and Brylinski): 

PROPOSITION. Let x, y E g be nilpotent elements and let &?y be the fibre of 
y under the Springer resolution of singularities of the nilpotent cone of g. 
Denote bjl p-x the We&group representation corresponding to x (and the 
trivial character of the component group G,.Gz) under the Springer- 
correspondence. Then 

mult,,H2fi’“)(~~) = #q-‘(y), 

where B(x) = dim 91y and q : C + C is the normalisation. 

It follows that these multiplicities determine the inclusion behavior of 
closures of nilpotent conjugacy classes in g and allow one to detect all 
classes with branched non-normal closures. The multiplicities have been 
calculated by Shoji [Sh] for F4 and by Beynon and Spaltenstein CBS] for 
E6, E,, and E,. Inspecting their tables one finds the following classes with 
a branched non-normal closure (we use the notations of Bala and Carter 
WI 1: 

F,:A,+B,, C3 

Eg: A,, 2Az, Az+A4, 

ES: &(a,), & &(a,), -Wad, 4, Dda,), D,+A,, -%(a,), A,, 
A,+A2,D4,D,(a,),A,+A,,2A2+A, 

8.6. The Method of Richardson. The paper [Ri] contains a method to 
calculate the rank of the quotient map 7~: g + k’ in a given nilpotent ele- 
ment XE g. It is easy to see that rank drc, = mult,(c) (notations 5.1), 
where C, is the conjugacy class of x [RI, Proposition 2.71. On the other 
hand, it is shown in [BK] that under certain assumptions about the stabi- 
lizer G,, the multiplicities are constant along the sheets containing the class 
C, in case c, is normal. Thus comparing rank dz, with the rank of the 
quotient map in the corresponding element of the Levi subalgebra 
associated to the sheet, Richardson obtains a sufficient criterion for non- 
normality. He detects in this way 

4 classes in E6, 5 classes in E, and 11 classes in E,, 

which have a non-normal closure with a bijective normaksation. 
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