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Cohomological Dimension of Local Fields

Hanspeter Kraft

Introduction

Let K be a local field in the unequal characteristic case and let k be
the residue-class field (char k=p>0). In this paper we want to show that
there is a connection between the cohomological p-dimension of the
Galois group G of K and the p-degree of the residue-class field k (i.e.
the number of elements in a p-basis of k over k?).

We first show that the cohomological ¢g-dimension of Gy for any
prime g depends only on the residue-class field k, using a decomposition
theorem which tells that the canonical exact sequence of Galois groups

1- Gg, — Gg—Gal(K,,/K)— 1

splits, where K,, denotes the maximal unramified extension of K (2.1).
For the cohomological p-dimension of G we then find (4.1)

od, Gg=1+cd, G, +p-degk

which is a generalisation of the well known formula for a perfect residue-
class field k. For a special type of residue-class fields (“function-fields”)
we will have a stronger result (5.2), from which it follows that the in-
equality is in general not an equality. An application to C,-questions is
added in Section 6.

In Section 1 we summarize some facts on local fields, profinite groups
and their cohomology.

I want to express my gratitude to J. P. Serre who filled a gap in the proof of Lemma 4.4
(concerning the h-equivariance of the map 4).

1. Notations and General Facts
In this section we want to summarize for further reference some results
concerning local fields and profinite groups.

1.1. Throughout this paper under a local field K we understand a
field of characteristic 0 which is complete in the topology defined by a
discrete valuation v and which has a residue-class field k of characteristic
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p>0. It is convenient to introduce the following terminology:

K = algebraic closure of K,
k,k,, k?~* =algebraic, separable algebraic and
perfect closure of k respectively,

kP* = (") kP" = maximal perfect subfield of k,

n=0
A,m =ring of integers of K and its maximal ideal m,
Gy, Gy = Galois group of K/K and of k/k respectively.
p-deg k = p-degree of k/k? =number of elements in a

p-basis of k over k? (see [11], tome I, Chap.II, §17).

1.2. If L is an algebraic extension of a local field K we denote by v;,
A; and k,, the (unique) extension of the discrete valuation v of K to L,
the ring of integers of L and the residue-class field of L respectively. The
ramification index of L/K is given by e, x=v, (ng) where my is a prime
element of K. The extension L/K is called totally ramified if k, =k, and
unramified if e; x =1 and k; /k separable algebraic.

If k'/k is any algebraic extension of the residue-class field of K there
exists always an algebraic extension K'/K such that ey =1 and
ky.—— k’,and K' is unique up to a unique isomorphism if k'/k is separable
algebraic. In the case k' =k, K' is called the maximal unramified extension
of K and is denoted by K,,,. One has the canonical isomorphism

Gal(K,,/K)— Gal(k/k)=G,
and the exact sequence of Galois groups
1> Gy, — Gg— G —1.

1.3. Let L be any field of characteristic 0 with a discrete valuation v,
and let L denote the completion of L with respect to the topology defined
by v, . Then by the lemma of Krasner (see [9], Chap. II, § 2, Exercices 1),
2)) the compositum L-L is an algebraic closure of L and one has a
canonical monomorphism

¢ Gy =Gy

of the Galois groups. In the special case where L is an algebralc extension
of a local field K with e,  finite L is algebraically closed in L and hence
@, an isomorphism.

1.4. Let G be a profinite group (i.e. a projective limite of finite groups,
see [8]) and g any prime number. By cd, G we denote the cohomological
g-dimension of G in the sense of Tate (for this definition and the following
facts see [8], Chap.I). If HcG is any closed subgroup of G the index
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[G:H] is a supernatural number [ g"« where ¢ ranges over all primes

and 0=<n,<co. We have the follow‘{ng results:

(i) For every prime q there exists a q-Sylow subgroup G, of G (a sub-
group with order a power of g and index prime to q) and all g-Sylow
subgroups are conjugated.

(i) If H=G is a closed subgroup of G we have for all q
cd, H< cd, G

with equality in following two cases:
a) the index [G:H] is prime to q,
b) H is an open subgroup and cd, G is finite.
(i) If H=G is a closed normal subgroup of G there is a spectral

sequence
H™(G/H,H"(H, A)) = H™*"(G, A)

Jor any G-module A (a G-module A is an abelian group with discrete
topology and a continuous action of G compatible with the group
structure).

It follows that
cd,G=cd, G/H+cd H

and if my=cd, G/H and ny=cd, H are both finite there is an isomorphism
H™(G/H, H™(H, A))— H™*™(G, A).
(iv) If G is a pro-p-group (i.e. the order of G is a power of p) we have
the following equivalence:
cd,G=n if and only if H"*'(G,Z/pZ)=0

(Z/pZ with trivial action of G).

1.5. The following results on the cohomological dimension of the
Galois group of a field K can be found in [8], Chap. II.

(i) Let K be any field of characteristic 0 and let L be a finitely generated
extension of K. Then for any prime q we have

cd, G, <trdegy L+cd, G,

(where trdeg, L denotes the transcendence degree of L over K) with
equality if cd, Gy is finite.
(i) If k is a field of characteristic p>0 then

cd, G, =1.
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(iii) If K is a local field with perfect residue-class field k then for any
prime q
cd, Gg=1+cd, G,

with equality if cd, G, is finite.

2. A Decomposition Theorem

The following theorem is given in [5], Appendice n°®2.1 for the case
of a perfect residue-class field. (The version there is not correct and we
want to give a complete proof here.)

2.1. Theorem. Let K be a local field with residue-class field k and let
L be a normal extension of K containing the maximal unramified extension
K,,. Then there exists an extension T of K and an isomorphism

TQgK, ——L.

For T one can take any field T' contained in L with k1./k purely inseparable
and maximal under this conditions.

T L

K—K,,.
As an immediate consequence we have

Corollary. The exact sequence of Galois groups

1- Gy, — Gg— Gal(K,,/K)—1
splits.

The proof of the theorem will be given in two steps. In 2.2 we prove
the existence of such a field T under the additional assumption that L
is a finite extension of K,,. In 2.3 we show that any field T contained in
L with kp/k purely inseparable and maximal under these conditions
induces an isomorphism

T®,K, —— L.

22. Let L/K,, be a finite extension such that L/K is normal. Then
the Galois group Gal(L/K,,) is solvable (see [11], Ch. IL § 10. Theorem 25
and use the fact that the residue-class field of K,, is separably closed
together with 1.3) and by induction on [L:K, ] one easily reduces to
the case of an abelian extension L/K,, with Galois group isomorphic to
(Z/q Zy" for some prime q. If g is different from p, the extension L/K,,, is
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totally ramified and therefore cyclic of order ¢ and of the form
L=K,,[x] with xi=n

where =z is a prime element of K (for any positive integer d prime to p
there exists exactly one extension of K, of degree d and this extension is
cyclic; compare [5], Appendice, Prop. 1.6). Then the field T=K[x] has
the required property. In the case g=p the exact sequence

1— Gal(L/K,,) — Gal(L/K)-%> Gal(K,,/K)—1

splits because Gal(K,,,/K)—— G, has cohomological p-dimension <1
by 1.5.(i) (see [8], Chap. I, Prop. 16). If ¢ is a section of ¢ the field T of
fixed elements of L under o(Gal(K,,/K)) has the required property.

L
rr— 1
T/; L,
T —|— M
k"
K K,,

2.3. In the general case let T be a maximal extension contained in L
such that kp/k is purely inseparable and define L,=T-K,, to be the
compositum of T and K,, in L. If L, is strictly contained in L there
exists a non trivial finite extension L,/L, contained in L such that L,/T
is normal. In this situation we can find a finite extension K'/K contained
in T and a finite extension M’ of K, =K' - K, contained in L, with the
following properties: M’/K' is normal, M’ and L, are linearly disjoint
over K; and L, =L,- M’ is the compositum. By 2.2 there exists a finite
extension T’ of K’ contained in M’ such that T'®y. K, —— M’ is an
isomorphism. It follows that (T®g T')®x K;,,—— L, is an isomor-
phism, hence T®y. T'—— T- T’ and K, are linearly disjoint over K'.
The residue-class field k;.,. of T- T’ is therefore a purely inseparable
extension of k and this contradicts the maximality of T.
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3. Cohomological Dimension and Residue-Class Field

In this section we want to show that the cohomological dimension
of a local field depends only on the residue-class field. For a perfect
residue-class field this is proved by Ax in [1] and it woulden’t be difficult
to deduce from this result that part of Theorem 3.1 which concerns the
cohomological g-dimension for g = p.

3.1. Theorem. Let K be a local field with residue-class field k. Then
for any prime q the cohomological g-dimension cd, G of the Galois group
of K depends only on the residue-class field k and for q=p= characteristic
of k we have

cd, Gg=1+cd, G,.

The proof will be given in 3.2, 3.3 and 3.4.

3.2. We first consider the case g+ p. By Theorem 2.1 there exists an
embedding G, = G, hence c¢d, G, <cd, Gx which proves our theorem in
the case cd, G, = 0. We may therefore assume that cd, G, is finite. Let
K’ be any algebraic extension of K such that eg, =1 and kg.=k" ~ the
perfect closure of k (1.2). By 1.3 and 1.5.(iii) it follows

cd, Gg-=cd, Gg=1+cd, G,.
By construction the index [Gg:Gy.] is a power of p, hence
cd, Gy=cd, Gy

which proves our theorem in the case g=p.

3.3. In the case g=p it is enough to show that for any finite extension
L/K with k, =k we have cd, G, =cd, Gg. This is clear if cd, G is finite.
For the general case we use the following result of Serre [10]:

Lemma. Let G be a profinite group without elements of order p. Then
for any open subgroup U< G we have

cdp U=cdpG.

By Proposition 3.4 below the assumption of the lemma is fullfilled if G
is the Galois group of a local field with residue-class field k of charac-
teristic p. This completes the proof of Theorem 3.1.

3.4. Proposition. Let K be a local field with residue-class field k of
characteristic p>0. Then the Galois group Gy of K contains no element
of order p.

We first construct a special algebraic extension K, of K with ramifica-
tion index ex_,x=1 and residue-class field kg =kP~” the perfect closure
of k. Take any p-basis {8;};.; of k and representatives {b;},; in K. For
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any iel let (x;,);, be a coherent system of (p*)-th roots of b,, i.e. x; €K
with
X;o=b; and xf1=x;, forv=0,1,2 ...
Kv=K [{xiv}iel] .

We obtain a tower of fields

Define

K=K,cK,cK,c--
with

and the union

has the required properties.

Furthermore let T be the extension of K obtained by adjoining for
all n the (p")-th roots of unity to K and let T, denote the compositum

K
T T,
K— K,

of Tand K in K: T, = T- K . By construction of K, T,,/T'is an abelian
extension with Galois group

Gal(T,,/T)—>Z! (*)
and also T/K is abelian with Galois group
Gal(T/K)—>F®Z, (%)

where F is a finite cyclic group of order prime to p (a subgroup of
Z/(p—1) Z). Now consider the following tower of fields

KcTcT, < K
and the corresponding normal series of Galois groups

Gx>GroGr 2(1). (%)
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In order to prove the theorem it is sufficient to show that no factor group
of this normal series contains an element of order p. This follows from
(¥) and (*+) for the factor groups G1/G_and Gg/G respectively. Further-
more Gp_ is a closed subgroup of G —— G _ (1.3) and by L5.

cd, Gg_=1+cd, G =<2,

hence G _ contains no element of order p.

3.5. Remark. It follows from the proof above that we have the
inequality
cd, Gy <2+cd, G +p-degk

(see 1.4.(iii) and use the fact that cd, 2,,: 1). We will show in the next
section that the right hand side of the inequality can be replaced by

1+cd, G, +p-degk.

3.6. Remark. One can show that the fields T and K constructed in
3.4 are always linearly disjoint over K. This is clear if K contains a p-th
root of unity and if the absolute ramification index e, of K is prime to p,
because in this case T/K is totally ramified. We will need later the linear
disjointness of T and K, only in this special situation (see Lemma 4.4).

4. An Upper Bound for the Cohomological p-Dimension

4.1. Theorem. Let K be a local field with residue-class field k of
characteristic p> 0. Then we have the following inequality for the cohomol-
ogical p-dimension of the Galois group G of K:

cd, Gg=1+cd, G, +p-degk.

After the reduction to the case of a separably closed residue-class
field in 4.3 the proof of the Theorem is given in 4.5 using Lemma 44.

4.2. Remark. The inequality in the Theorem 4.1 is in general not an
equality, as we will show in Section 5 (see Corollary of Theorem 5.2 and
Remark 5.3). But it seems probable that for a separably closed residue-
class field k one always has: cd, Gy = 1+ p-deg k. This is true forp-degk <1,
because one has more generally cd, G 22 if the residue-class field is not
perfect. (In fact, the norm map of a totally ramified normal extension of
degree p of K is not surjective, because the induced map on the residue-
class field is not surjective.)

4.3. Let K, be the maximal unramified extension of K. From 1.4.(iii)
and 1.3 we get
cd,Gg=cd, G, +cd, G, =cd, G,+cd, Gy, -
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We may therefore assume that the residue-class field k is separably
closed and that the p-degree of k is finite. In this case we already know
(see Remark 3.5) that

cd, Ggx=<2+p-degk

and the following Lemma will be the crucial point of the proof of
Theorem 4.1.

4.4. Lemma. If in addition to the assumptions 4.3 the absolute ramifica-
tion index ey of K is prime to p and K contains the group p, of p-th roots
of unity, then

H*2(Gg,p,)=0 with d=p-degk.

Consider the extension fields K  and T and the compositum T, =T- K
constructed in 3.4. The situation is pictured in the diagram (T and K
are linearly disjoint over K, see Remark 3.6)

K
H
T T
K K,

where we use the following notations:
H=Gal(K/T,)
g=Gal(T,/T)—> 2}
h=Gal(T/K)—> Z,
G=Gal(T, /K)— Gy/H.

The exact sequence of Gg-modules

1——>yp—>l?*—?’;>lz*——’1
yields an isomorphism

H**2(Gy, p,) —— H**'(G, T4/T3")

(see 1.4.(iii) and use the following facts: ¢cd,G=d+1, cd, H<1 and
T*/T*?— H'(H,p,) is an isomorphism of G-modules). A similar
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argument applied to the normal subgroup g< G yields an isomorphism
H*\(G, T*/T*?)—— H'(h, H'(g, T2/ T3"))-

If z is a profinite group isomorphic to Zp and if 4 is any z-torsionmodule,
it follows from the cohomology of 2,, (see [9], Ch. XIII, §1) that the
canonical epimorphism 4 — A, to the largest quotient of A with trivial
z-operation induces an isomorphism

H'(z, A)—> H'(z, A,)=Hom(z, 4,)
and hence a canonical epimorphism
Hom(z, A)— H'(z, A).

In the situation above, we can find a decomposition of g in h-invariant
cyclic factors:

8=81 X 82X X8y-
We have therefore a canonical epimorphism
Hom(g,, TX/T*")— H' (g, T/T3")

which is a morphism of g- and h-modules. Since K contains u,,, h operates
trivially on g/g? and the operation of h on

Hom(g,, T}/T") «~— Hom (g,/gf, T3/T5")

is given by the operation of h on T}/T}". Hence any generator o, of g,
induces an isomorphism

Hom(g,, T3/T35")—— T5/T3*
of g- and h-modules. This yields an epimorphism
TA/T5" — H' (8, T3/T3")

of g- and h-modules and by induction we find an epimorphism of h-

modules
@: T/TE — H' (g, TI/TEY)

depending on generators g; of g;, i=1,2,...,d.
Now ¢ induces an epimorphism

H'(p): H'(h, TX/T*?)— H'(h, H' (g, T}/T3"))
and hence an epimorphism
H'(h, TX/T2?)— H**2(Gg, ). (*)
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If we apply the arguments used at the beginning of this proof to the field
K, we get an isomorphism

H*(Gg,, u,)— H'(h, TX/T2")
because h —— Gal(T,_/K ) is a canonical isomorphism. But
H*(Gy. 1) =0
because cd, Gy <1 (see 1.5.(iii); Gg_—> G¢_ by 1.3), hence by (¥)
H** (G, u,)=0.

4.5. We now complete the proof of Theorem 4.1. By Theorem 3.1
we may without loss of generality assume that K contains the p-th roots
of unity and that the absolute ramification index ey is prime to p. Let
G,< Gk be a p-Sylow subgroup and let K, be the corresponding field of

fixed elements. Then K, =| ] L; where L, runs over all finite extensions
iel

of K contained in K. Clearly all L, satisfy the assumptions of Lemma 4.4

and we get

H'H’Z(Gp, Z/pl);* Hd+2(Gp,#p)—~—’ h_’m Hd+2(GL1’”p)=0'
I
Hence
cd,Gg=cd,G,<d+1
by 1.4.(iv).

5. Local Fields with Separably Generated Residue-Class Field

In this section we want to refine the result of Theorem 4.1 for a special
class of residue-class fields and also give some information on the
structure of the Galois group.

5.1. Definition. A field k of characteristic p>0 is called separably
generated if k is separably generated over its maximal perfect subfield
kP, i.e. if there exists a transcendence basis {X};.; of k/k?” such that k
is separable algebraic over kP ({X;};.).

This definition can also be expressed in the following'way: Every
p-basis of k is a transcencence basis of k/k?". (In fact:wp-mdcpqndent
elements of k are always algebraically independent over kP”) In particular,
k is separably generated if

p-deg k=trdeg k/kP” <o0.

5.2. Theorem. Let K be a local field with separably generated residue-
class field k. Then we have for the cohomological p-dimension of the

18a Math. Z, Bd. 133
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Galois group Gy of K:

1+p-degk<cd,Gg=1 +p-degk+cd, kaq,
with
cd, Gy=1+p-degk+cd, G,

if k is finitely generated over kP”.
As an immediate consequence we have

Corollary. If in addition to the assumption of the theorem the field
kP” is algebraically closed, then

cd, Gy=1+p-degk.

5.3. Remark. The inequality c¢d, G, ,-»=<cd, G, holds for any field of
characteristic p>0. It follows from this and Theorem 5.2. that the
inequality of Theorem 4.1 is in general not an equality.

5.4. Remark. If K is a local field with separably generated residue-
class field k of infinite p-degree, Theorem 5.2 tells that c¢d, Gy is also
infinite. But this can already be deduced from that part of Theorem 5.2.
concerning only separably generated residue-class fields of finite p-degree.
(In fact for any integer n>0 there exists an algebraic extension k'/k
such that k' is separably generated of p-degree n so that we may apply
Theorem 5.2 together with 1.1 and 1.4.(ii).) It is therefore enough to prove
the theorem for separably generated residue-class fields of finite p-degree.

5.5. By the corollary of Theorem 2.1 (decomposition theorem) we
know that the canonical exact sequence of Galois groups

1- Gg, ,— Gy—Gal(K,,/K)— 1

splits. The following theorem gives some information on the structure
of the Galois group Gy _, i.e. of the Galois group of a local field with
separably closed residue-class field:

5.6. Theorem. Let K be a local field with separably closed residue-
class field k. Then the p-Sylow-subgroup G, of Gy is a normal subgroup
and we have a split exact sequence:

1-G,—Gg— [[2,—1.

q*p

(p)

Furthermore if k is separably generated with finite p-degk=d<oo there
is a normal series of Galois groups contained in Gy of length d+1:

G(p)=GODG1:3G23---:Gd:GdH:(l)

such that the factor groups G;/G,; ., are free pro-p-groups.
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The first part of this theorem is well known: A local field with separably
closed residue-class field k of characteristic p>0 has exactly one ex-
tension of degree n if n is prime to p and this extension is cyclic (compare
[5], Prop. 1.6; this has already been used in 2.2).

The proof of the Theorems 5.2 and 5.6 will be given in the rest of this
section. We always assume that the residue-class field has finite p-degree
since this is allowed by Remark 5.4.

5.7. The proof of the theorems will use some induction argument on
the p-degree of k. We need the following construction:

Let K be any local field with residue-class field k, ring of integers 4
and maximal ideal m, and let X be a transcendental element over K.
Denote by Ay the localisation of the polynomial ring 4 [X] at the prime

ideal generated by m:

Ax=A [X](m - A[X])
and let A" be the completion of A, in the m-adic topology. Ay is a discrete
valuation ring with quotient field K(X) and residue-class field k(X)
and the quotient field K’ of A’ is a local field with residue-class field k(X).
We have the following diagram

o]
s
ke
A
A
2

=
b
.

~

Lemma. (a) K (X) and K' are linearly disjoint over K (X).
(b) The compositum K'- K(X) is an algebraic closure of K'.
(c) There is an exact sequence of Galois groups

15g—-Gx—G—1

where g is a closed subgroup of a free profinite group (in particular:cdg<1).

The assertion (a) follows from the fact that the maximal ideal of
Ay is not decomposed in any finite extension of K (X) contained in K (X)
and (b) follows from the lemma of Krasner (see 1.3). In order to prove (.c)
observe that g=Gal(K'-K(X)/K'-K(X)) is canonically embedded in
Gg x, which is a free profinite group (see [3]).

5.8. With the notations of 5.7 let L be an algebraic extension_ qf K’
with finite ramification index e, . such that Land K are linearly disjoint

18b Math. Z, Bd. 133
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over K:
K(X)
\K' L
L | i
K K(X) (X) L-K(X)
K K(X) K L

Lemma. If in addition to the assumptions and notations above we have
cd, Gy < oo then
4 cd, G =1+cd, G

with equality in the following two cases

(a) L/K' is finite.

(b) The residue-class field k of K is separably closed and ky/ky. is
separable algebraic.

Furthermore if the residue-class field ky of L is separably closed, then
the Galois group

H=Gal(L/L-K (X))

is a free pro-p-group.

Let G, bea p-Sylow subgroup of Gy and let K, be the corresponding
field of ﬁxed elements. Then we have the followmg diagram:

L

K K(X) M
G(p)

K, K,(X) L,

K K(X) L

with L, =K,-L and M = =K - L. We already know from Lemma 5.7.(c)
that cd G,_S 1 +cd Gy and we want to show that in the cases (a)and (b)
we have H*™*'Y(G,,, Z/p Z)*0 for d=cd, G, from which the first part
of the lemma follows. As in the proof of Lemma 4.4 we have an iso-
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morphism
H*Y(G,,, Z/p Z)—> H*(G,y, M*/M*?)

where G, acts on M* by the canonical isomorphism G, —— Gal(M/L)).
Of course, M is a Henselian field with ey, = oo and residue-class field k,,
containing k(X) and there is an epimorphism

@: M*/M*P— k¥ kP

induced by the epimorphism Uy— k¥ (Uy =units of M) and the iso-
morphism  Uy/Ufj—— M*/M*? (because the value group of M is
p-divisible). ¢ is an epimorphism of G,-modules and we want to show
that there is a quotient of the G,,-module k¥ /k}? isomorphic to Z/pZ
with trivial action. This is clear in case (b) because in this case k,, is not
perfect (k,y/k (X) is separable algebraic, hence p-deg k,, = 1) and the action
of G, on k and hence also on k,, is trivial. In case (a) we may assume
without loss of generality that L=K’, hence k,,=k(X), and then the
place X =0 will induce the required quotient. In both cases this yields
an epimorphism
Hd(G(p)’ M*/M*?)— Hd(G(p)’ Z/pZ)

and proves our assertion, because H"(G(p), Z/pZ)+0 by assumption.
If now k; is separably closed, the same is true for k by the linear dis-
jointness of L and K over K, and there exists only one extension of L of
degree n if n is prime to p, and this extension is contained in L, (because
it comes from an extension of K contained in K ). The Galois group
H=Gal(L/M) is therefore a pro-p-group with cd, H<1, hence a free
pro-p-group.

5.9. Now let K be a local field with separably generated residue-
class field k of p-deg k< co. Then k is a separable algebraic extension of
the field k,(X,,..., X,) of rational functions in d=p-degk variables
over the perfect field k,=k?”. The ring of Witt-vectors W(k,) (see [9],
Ch.II, §6.) is embedded in K in a unique way such that it induces the
embedding k, <k of the residue-class fields. Let K denote the algebraic
closure of the quotient field of W(k,) in K and consider a tower of local
fields

KOcKVe...c K9=K

constructed in the following way: Take the completion K" of the field
K9(X,, ) constructed as in 5.7, embed it into K and denote by K“*" the
completion of the algebraic closure of K in K. The fields K are all
local fields with residue-class fields

k;=algebraic closure of k; _;(X;) in k,
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and we have the following diagram

K9=K

ot

RS .

N

K@ K® K"f’ K\‘{”=I‘<1

with obvious notations. It follows by induction from Lemma 5.8 that
Cdp Gxé Cdp GK(o) + d = Cdp Gx(o) + p'deg k

with equality in the following two cases:
(a) k is finitely generated over ko =kP",
(b) k is separably closed.

In case (a) we get
cd,Ggy=1+cd, G, ,»+p-deg k
and in case (b)
cd, Gx=1+p-degk.

If k is an arbitrary separably generated field, we have therefore

cd, Ggzcd, Gy, =1+p-degk

and this proves Theorem 5.2.

Now let us consider the situation of Theorem 5.6 where the residue-
class field k is separably closed. In the above diagram all local fields
K® have separably closed residue-class field and it follows from Lemma
5.8 that the Galois groups

Gal(K,, ,/K))—— Gal(K9/K{")
are free pro-p-groups. It follows that the normal series

Gy>G2G,2 262G, =(1)
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ith
W Gy =G, =p-Sylow subgroup of G
G;= GK.
has the required property and this completes the proof of Theorem 5.6.

6. Application to (C,)-Questions

6.1. One says that a domain R has Tsen-level TS(R)<r, or has the
property (C,), if any homogenous form f(X,,...,X,)eR[X,,...,X,] of
degree d such that n>d" has a nontrivial zero in R.

By the paper [6] of Lang (completed by Nagata [7]) and the result [4]
of Greenberg we have the following “transition properties”:

(a) If L/K is an extension of fields then
TS(L)=TS(K)+trdeg L/K .

(b) If R is a discrete valuation ring and R the completion of R in the
topology given by the discrete valuation then

TS(R)STS(R).

6.2. Proposition. Let K be a local field with separably generated
residue-class field and assume that kP is algebraically closed. Then

TS(K)=1+TS(k)=1+p-degk=cd, Gg.

It follows from the construction in 5.7 and the transition properties
(a) and (b) of 6.1 that
TS(K)STS(K®)+d

TS(k)<d

with d=p-deg k. On the other hand one knows that a local field with
algebraically closed residue-class field is (C,) (see Lang [6]), hence

TS(K)<1+d.
Furthermore it is easy to see that for a field k of characteristic p>0 we
have TS (k)= p-deg k
(consider a p-basis) and for a local field K with residue-class field k we get
TS(K)=1+TS(k)
(see Lang [6], Part II: “Existence of normic forms”). Hence
1+d<1+TSK)STS(K)S1+d

which proves the proposition.
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