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G-VECTOR BUNDLES AND THE
LINEARIZATION PROBLEM

Hanspeter Kraft

Abstract. The following is an expanded version of my talk at the Montreal

Conference on “Group Actions and Invariant Theory” where I gave a report

on some old and new results about G-vector bundles on algebraic varieties

and their connection with the Linearization Problem (4.1). This problem asks

whether every algebraic action of a reductive algebraic group G on affine space

An is linearizable. A positive answer would imply that every G-vector bundle

on An is trivial (4.2). At the time of the conference the Linearization Problem

was completely open. Since then Schwarz has constructed non-trivial G-

vector bundles on some representation spaces, thus giving non-linearizable

actions on affine spaces (see 4.3).

§ 1. G-Vector Bundles

Throughout the paper the base field is the field of complex numbers C. Of
course, it could be replaced by any other algebraically closed field of characteristic
zero. Let G be an algebraic group and X a variety with an algebraic G-action
(g, x) 7→ g ·x. Recall that this means that the map G ×X → X, (g, x) 7→ g ·x, is
a morphism of complex algebraic varieties. We then call X a G-variety. Typical
examples are linear actions on vector spaces obtained from rational representations
ρ : G→ GL(V ), where rational means that ρ is an algebraic homomorphism.

Definition. A G-vector bundle on X is a vector bundle V on X with an
algebraic G-action such that the following holds:

(a) The projection p : V → X is G-equivariant;
(b) The action is linear on the fibres Vx := p−1(x), (i.e. for every g ∈ G and

x ∈ X the map v 7→ gv : Vx → Vgx is linear).

It follows from the definition that for every x ∈ X we obtain a rational rep-
resentation of the isotropy group Gx := {g ∈ G | g ·x = x} on the fibre Vx of the
G-vector bundle.
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2 HANSPETER KRAFT

The category of G-vector bundles on X will be denoted by VecG(X). Homo-
morphisms, isomorphisms, direct sums and tensor products are defined in the usual
way.

Example. Every G-module M (i.e. finite dimensional rational representation

of G) determines a G-vector bundle V := M × X
pr
−→ X. A G-vector bundle is

called trivial if it is isomorphic to a G-vector bundle of this form.

Remark 1. If X is affine with coordinate ring O(X) the category VecG(X) is
equivalent to the category ProjG(O(X)) of G-O(X)-modules which are projective
and of finite rank over O(X) and (locally finite and) rational as G-modules. The
functor is given by taking global sections: V 7→ V(X). It is easy to see that any
P ∈ ProjG(O(X)) is also projective as a G-O(X)-module, i.e. a direct summand of
a free G-O(X)-module M ⊗C O(X) (cf. [BH85, 4.2]).

§ 2. Some Examples

2.1. Family of representations. If the G-action on X is trivial, a G-vector
bundle on X can be understood as an algebraic family of representations (Vx)x∈X

of G parametrized by X, in the following sense: Consider the set

Repn(G) := {ρ : G→ GLn(C) | ρ a representation}

of n-dimensional representations of G. It is a subset of the set of all morphisms
G→ Mn(C), which in turn can be identified with O(G) ⊗Mn(C):

Repn(G) ⊂ Mor(G,GLn(C)) = O(G)⊗Mn(C).

A map φ : X → Repn(G), where X is a variety, is called algebraic (or a morphism)
if the image of X in O(G) ⊗Mn(C) is contained in a finite dimensional subvector
space U such that φ : X → U is a morphism of varieties. It is easy to see that
the G-vector bundle structures on the trivial bundle C

n × X are in one-to-one
correspondence with the algebraic maps X → Repn(G).

The action of GLn(C) on Mn(C) by conjugation induces an action on Repn(G)
whose orbits are the equivalence classes of n-dimensional representations of G. For
every orbit O ⊂ Repn(G) its closure O in O(G) ⊗Mn(C) is contained in Repn(G),
and O = Ō if and only if the corresponding representation is completely reducible
(cf. [Kr, II.2.7 Satz 3]).

From now on we assume that G is reductive. Then every orbit of Repn(G) is
closed in O(G)⊗Mn(C), and the number of orbits in Repn(G) is countable, and even
finite provided the character group of G is finite (e.g. if G semisimple). It follows
that for every algebraic map φ : X → Repn(G), X connected, the image of X is
contained in a single GLn(C)-orbit O. In addition, the stabilizer of a representation
is a Levi-subgroup of GLn(C), hence a product of GLr’s, and therefore the orbit
map GLn(C)→ O has a local section (with respect to the Zariski-topology). From
this one easily obtains the following result; we will give a different proof suggested
by G. Schwarz.
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Proposition 1. Let G be a reductive group and let V be a G-vector bundle on
X, where G acts trivially on X.

1. V is locally trivial in the Zariski-topology. In particular, the representations
Vx are all equivalent in case X is connected.

2. There is an isomorphism of G-vector bundles

V
∼
−→

⊕

ω

Mω ⊗ Vω,

where Mω is a simple G-module and Vω a vector bundle on X (with trivial
G-action).

Proof. We may assume that X is connected. Let M be a simple G-module.
It follows from the next lemma that

VM := (M∗ ⊗ V)G

is a vector bundle over X. Furthermore, the canonical homomorphism M⊗VM → V
is an injective G-homomorphism whose image is the M -isotypic component of V.
As a consequence we see that V is isomorphic to the G-vector bundle

⊕

M M⊗VM ,
where M runs through the simple G-modules occurring in a fibre of V. This proves
the proposition. �

Lemma 1. The fixed point set VG is a vector bundle over X.

Proof. We may assume that X is irreducible and that V is isomorphic to
X × C

n as a vector bundle. Then the projection p : V → X is the quotient under
the obvious action of G × C

∗, and it follows from Luna’s slice theorem that the
fibres of p : VG → X are vector subspaces of C

n of constant dimension d. Hence
VG is a subvector bundle of V. (In fact, p : VG → X corresponds to a morphism
from X to Grassd(n), the Grassmanian, and the canonical bundle on Grassd(n) is
locally trivial in the Zariski-topology.) �

Corollary. Every G-vector bundle on X is trivial in case every vector bundle
on X is trivial.

2.2. Homogeneous bundles. Now assume that X is a homogeneous G-
variety, i.e. X = G/H, where H is a closed algebraic subgroup of G. It is well
known that every G-vector bundle on G/H is of the form

G ⋆H N → G/H.

Here N is an H-module and G ⋆H N is the orbit space (G × N)/H, where the
(right-)H-action is given by (g, n) ·h := (gh, h−1 ·n). These bundles are usually
called homogeneous vector bundles.

A G-vector bundle G⋆H N is trivial if and only if the representation of H on N
extends to a representation of G. This follows immediately from the remark below.
As an example we see that every SL2-vector bundle on C

2 \{0} (obvious SL2-action

on C
2 \ {0}) is trivial. In fact C

2 \ {0}
∼
← SL2 /U , where

U =

{(

1 ∗
0 1

)

∈ GL2(C)

}

∼
−→ C

+,

and every representation of U extends to a representation of SL2 (cf. [Kr, III.3.9
Lemma]).
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Remark 2. For every quasi-affine H-variety Y the orbit space G⋆H Y exists as
an algebraic G-variety and is a fibre bundle over G/H with fibre Y . (Fibre bundle
means that it is locally trivial in the étale topology.) This is clear if the H-action on
Y extends to an action of G, because the isomorphism G × Y → G × Y, (g, y) 7→
(g, g ·y), induces a G-isomorphism

G ⋆H Y
∼
−→ G/H × Y,

and the diagram

G× Y −−−−→ G ⋆H Y




y





y

G −−−−→ G/H

is a pullback. In general, every quasi-affine H-variety Y is a locally closed H-stable
subvariety of a G-variety Z. Hence

G ⋆H Y →֒ G ⋆H Z
∼
−→ G/H × Z,

and the claim follows.

2.3. Principal bundles. Let us consider a principal G-bundle π : X → Y .
This means that X is a G-variety with all orbits isomorphic to G, that the fibres
of π are G-orbits and that π is locally trivial in the étale topology, i.e. there is a
surjective étale morphism Y ′ → Y and a G-isomorphism

G× Y ′ ∼
−−−−→ X ×Y Y ′ −−−−→ X





y





y





y

π

Y ′ Y ′ −−−−→ Y

over Y ′.

Proposition 2. Let π : X → Y be a principal G-bundle. The pullback W 7→
π∗W defines an equivalence

π∗ : Vec(Y )
∼
−→ VecG(X).

Again, this is well known; it can be proved in several ways. In the next section
we will consider a more general situation from which the proposition follows as a
special case (see Proposition 3 in the next paragraph).

§ 3. Algebraic Quotients and Pullbacks

Let G be reductive and X a G-variety.

Definition. A morphism π : X → Y is an (algebraic) quotient if π is constant
on G-orbits and satisfies the following condition:

(Q) For every affine open subset U ⊂ Y the inverse image π−1(U) is affine and

π∗ : OY (U)
∼
→ OX(π−1(U))G is an isomorphism.
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If a quotient exists then it is unique; we will denote it by π : X → X//G.
The quotient map π has a number of remarkable properties (see [Kr, II.3.2] or
[MF, Chap. 1, § 2]): It is G-closed, i.e. the image of a closed G-stable subset is
closed, and G-separating, i.e. disjoint closed G-stable subsets have disjoint images.
It follows from this that X//G carries the quotient (Zariski-)topology and that every
fibre of π contains a unique closed orbit. (Here we use the fact that every G-variety
contains closed orbits.)

Examples. (a) If X is an affine G-variety then the quotient exists. It is given
by X//G := SpecO(X)G, the maximal spectrum of the invariant ringO(X)G, which
is a finitely generated C-algebra by Hilbert’s finiteness theorem (cf. [Kr, II.3.2])

(b) The canonical morphism π : C
n+1 \ {0} → P

n is the quotient under the
scalar C

∗-action.

(c) Every principal G-bundle π : X → Y (2.3) is a quotient morphism.

(d) Given any quotient π : X → X//G and a locally closed subvariety Y ⊂ X//G,
then π : π−1(Y )→ Y is also a quotient.

Let us assume now that X is a G-variety which admits a quotient π : X →
X//G. IfW is a vector bundle on X//G then the pullback π∗W is clearly a G-vector
bundle on X, and we obtain the following diagram:

π∗W −−−−→ X




y
π̃





y

π

W −−−−→ X//G

It follows that π̃ is a quotient, too. In fact, π∗W//G has a natural vector bundle
structure and W ≃ π∗W//G as a vector bundle over X//G. The following proposi-
tion characterizes the G-vector bundles which are obtained in this way.

Proposition 3. A G-vector bundle V on X is isomorphic to a pullback π∗W
if and only if it satisfies the following condition:
(PB) For every x ∈ X such that the orbit Gx is closed, the isotropy group Gx acts

trivially on the fibre Vx.
In this case V//G is a vector bundle over X//G isomorphic to W.

(The following proof is due to F. Knop.)

Proof. It is clear that a pullback bundle satisfies the condition (PB). For
the other implication one easily reduces to the case where X//G (and hence X) is
affine. Then the global sections P := V(X) form a projective G-O(X)-module (see
Remark 1 in § 1). Suppose that the fixed elements PG form a projective O(X)G-

module. (Recall that O(X)G = O(X//G).) Then PG ⊗O(X//G) O(X)
∼
→ P , where

the isomorphism is given by p ⊗ f 7→ fp, and the proposition follows. Now the
condition (PB) implies that for every closed orbit Gx the restriction V|Gx is trivial:

V|Gx
∼
−→

G
C

r ×Gx,

where G acts trivially on C
r. This means that P ⊗O(X) O(Gx)

∼
→ O(Gx)r. Using

the canonical surjective homomorphism P →→ P⊗O(X)O(Gx) and taking invariants
we obtain a surjective homomorphism

PG −→→ PG ⊗O(X//G) O(π(x)) ≃ C
r.
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Now one shows that the kernel of this map is my PG, where my denotes the maximal
ideal of the point y = π(x), hence PG/my PG ≃ C

r for all y ∈ X//G. Since PG is
a finitely generated O(X//G)-module this implies the claim. �

Remark 3. This proves Proposition 2 of the previous paragraph.

Corollary. Assume that the isotropy groups Gx generate G. Then a vector
bundle W on X//G is trivial if and only if π∗W is a trivial G-vector bundle.

Proof. If π∗W ≃M ×X, then every isotropy group Gx acts trivially on M .
Therefore it follows from the assumption that M is the trivial G-module, and so
W ≃ π∗W//G ≃M ×X//G. �

§ 4. The Linearization Problem

4.1. Linearizable actions. An action of G on the affine space A
n is called

linearizable if it becomes linear after a polynomial change of coordinates, i.e. there
is a G-equivariant algebraic isomorphism A

n ∼
→ V , where V is a representation

of G. In the last years a lot of work has been invested in solving the following
interesting problem (a positive response has been conjectured by Kambayashi
[Ka79, Conjecture 3.1]):

Linearization Problem. Is every action of a reductive group G on affine
space A

n linearizable?

Very recently Schwarz gave the first examples of non-linearizable reductive
group actions on affine space [Sch89] (see 4.3). Before that, a number of “small”
cases have been handled positively, using various methods (see [KS89]). We refer
to [Kr89] for a report about the Linearization Problem.

4.2. Equivariant Serre-Problem. The construction of the counterexam-
ples uses the following result which relates the Linearization Problem with the
question whether every G-vector bundle on a representation space is trivial or not
(see [BH87]).

Proposition 4. Assume that the linearization problem has a positive answer,
and let V be a representation of the reductive group G. Then

(a) Every G-vector bundle on V is trivial.
(b) Every vector bundle on V//G is trivial.

Proof. Let p : V → V be a G-vector bundle on V . As a variety V is an
affine space, because every vector bundle on A

n is trivial (Theorem of Quillen

and Suslin, see [Qu76]). On V we have an action of Ĝ := C
∗ ×G, where C

∗ acts
by scalar multiplication on the fibres of V. It follows that in the diagram

V
p

−−−−→ V




y

π

V//G
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the map p is the quotient by C
∗. Hence the composition π ◦ p is the quotient by Ĝ.

By assumption we can linearize the action of Ĝ on V and obtain a Ĝ-isomorphism

ϕ : V
∼
−→W,

where W is a representation of Ĝ. Consider the Ĝ-stable decomposition W =
W C

∗

⊕F . It follows from Luna’s slice theorem [Lu73] that C
∗ acts on F by scalar

multiplication. Hence the linear projection pr : W → W C
∗

is the quotient by C
∗,

and W is the trivial G-vector bundle F ×W C
∗

on W C
∗

. This shows that ϕ induces
the following isomorphisms:

V
ϕ

−−−−→
∼

W




y

p





y
p′

V
ϕ̄

−−−−→
∼

W C
∗





y

π





y

π

V//G
∼

−−−−→ W C
∗

//G = W//Ĝ

In particular, we obtain C
∗-equivariant isomorphisms

ϕ : Vx
∼
−→ {ϕ̄(x)} × F.

Since the C
∗-action is by scalar multiplication on both sides this means that ϕ is a

linear isomorphism. Therefore we obtain a G-vector bundle isomorphism

V
∼
−→ ϕ̄∗W = F × V.

This proves (a), and (b) is a consequence of (a) by the corollary of Proposition 3
in § 3. �

4.3. Counterexamples. Let V be a representation of the reductive group
G. It is not hard to see that every G-line bundle on V is trivial (see Corollary
1 of Proposition 7). For G-vector bundles of higher rank this is not true, due to
the counterexamples of Schwarz. Let Vi denote the irreducible representation of
SL2(C) of dimension i + 1 and consider the adjoint representation V = V2.

Proposition 5 ([Sch89]). For every i ≥ 3 there are infinitely many non-
isomorphic SL2-vector bundles V on V whose zero fibre V0 is SL2-isomorphic to
Vi.

By Proposition 4 above this implies that there are non-linearizable C
∗ × SL2-

actions on A
n for every n ≥ 7. Schwarz showed in addition that the underlying

SL2-actions are also non-linearizable (n 6= 8).

Remark 4. It can be shown that all these examples are holomorphically trivial
G-vector bundles (see [Sch89]). In particular, the corresponding SL2-actions can
be linearized if we allow a holomorphic change of coordinates. Clearly, every G-
vector bundle on V is trivial in the differentiable setting, since V has an obvious
G-retraction to the origin.
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§ 5. Some Results

In this paragraph we assume that G is reductive.

5.1. Stability. Let X be a G-variety. A G-vector bundle V on X is called
stably trivial if there is a trivial G-vector bundle V0 = M ×X such that V ⊕ V0 is
trivial. The following result is due to Bass-Haboush and Thomason, see [BH87].

Theorem 1. Every G-vector bundle on a representation space V is stably triv-
ial.

In fact their results are more general and are expressed in terms of algebraic
K-Theory. In view of Proposition 4 we might ask the following question:

Problem. Is it true that every vector bundle on V//G is stably trivial or even
trivial?

5.2. Small quotients. Let V be a representation of G. If every G-invariant
function on V is a constant, i.e. V//G = {∗}, then every G-vector bundle on V is
trivial. This is an easy consequence of Luna’s slice theorem; a more general result
will be given in Theorem 3. For a one-dimensional quotient we have the following
result.

Theorem 2. Let V be a representation of G with dim V//G = 1. Assume that
the generic orbit is closed and has trivial stabilizer. Then every G-vector bundle on
V is trivial.

This can be proven using methods developed in joint work with Schwarz
[KS89], where we study the Linearization Problem for actions with a one-dimen-
sional quotient.

5.3. Fix-pointed actions. An action of G on X is called fix-pointed if every
closed orbit in X is a fixed point. Such actions have been studied by Bass and
Haboush. They obtained the following result ([BH85, 10.2], cf. [Kr89, § 5.5]).

Theorem 3. Let X be a fix-pointed G-variety which admits a quotient π : X →
X//G. Then π induces an isomorphism XG ∼

→ X//G, and we have an equivalence

VecG(X)
∼
−→ VecG(XG)

given by restriction, i.e. every G-vector bundle on X is of the form
⊕

Mω ⊗ π∗Vω,
where the Mω are simple G-modules and the Vω are vector bundles on X//G.

In particular, we obtain the following corollary:

Corollary. Let X be as above and assume that every vector bundle on X//G
(or on X) is trivial. Then every G-vector bundle on X is trivial.

Typical examples for the corollary are:
1. Fix-pointed actions on A

n;
2. Actions on normal affine varieties with a fixed point and only constant

invariants.

5.4. Tori. The last result in this section deals with tori. We refer to [Kr89,
§ 7] for the notation used below.
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Theorem 4. Let V be a representation of a torus T . Assume that the principal
stratum (V//G)pr has a complement of codimension ≥ 2 and that the quotient V//G
is (locally) factorial. Then V//G is smooth, π : V → V//G has a section and every
T -vector bundle on V is trivial.

Outline of Proof. One first shows that the fibre bundle π : Vpr → (V//G)pr

is trivial. We will see in the next section (6.2) that any G-vector bundle V on V is
locally trivial over the quotient V//G. The group functor of automorphisms of V is
represented by an algebraic group scheme A over V//G. The triviality of the fibre
bundle over (V//G)pr implies that A|(V//G)pr

is “constant” with fibre A0 isomorphic
to a product of GLn’s. Hence V|(V//G)pr

can be understood as a principal bundle
with structure group A0. Now the codimension 2 condition can be used to show
that this bundle has an extension to all of V//G, hence is trivial. �

§ 6. Some Methods

In this section we assume again that G is reductive.

6.1. Equivariant Nakayama Lemma. The following result can be found in
[BH85].

Lemma 2. Let X be an affine G-variety, Y ⊂ X a closed G-stable subvariety
and V, W two G-vector bundles on X.

1. Every G-homomorphism ϕ : V|Y → W|Y extends to a G-homomorphism
ϕ̃ : V → W.

2. Assume that all closed orbits are contained in Y . Then the extension ϕ̃ of
ϕ is unique.

It is easy to see that this lemma implies Theorem 3 of the previous paragraph
and its corollary.

6.2. Local triviality. In general we cannot expect that G-vector bundles are
locally trivial, i.e. that there is a covering X =

⋃

Ui by G-stable Zariski-open sets
Ui such that the restrictions to the Ui’s are trivial. In fact, we have seen in 2.2 that
a G-vector bundle G ⋆H N on the homogeneous space G/H is trivial if and only if
the representation of H on N extends to a representation of G.

Nevertheless, the situation is different when the base X is a representation space:

Proposition 6. Every G-vector bundle on a representation space V of G is
locally trivial.

Proof. Consider a closed orbit Gx in V . Then V|Gx
∼
→ G ⋆H W , where H :=

Gx and W := Vx. Now V H is a linear subspace, and the H-vector bundle V|V H

is trivial by the corollary of 2.1 Proposition 1: V|V H

∼
→ W × V H . Since 0 ∈ V H ,

the representation of H on W extends to a representation of G, and therefore
V|Gx

∼
→ G/H ×W is trivial. By Lemma 2(a) above this isomorphism extends to

a G-homomorphism V → W × V which is an isomorphism in a neighbourhood of
Gx. �
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Remark 5. In the proof above we only needed the following two facts about
the underlying affine variety X:

1. XG 6= ∅;
2. For every isotropy group H of a point of a closed orbit the fixed point set

XH is connected.

6.3. Cohomology. As a consequence of the proposition above one shows that
the isomorphism classes of G-vector bundles V on a representation space V whose
fibre V0 over the origin is isomorphic to a given G-module M , can be described by
the non-abelian cohomology set

H1(V//G,AM ),

where AM is the automorphism group scheme of the trivial G-vector bundle M×V ,
representing the functor which associates to every U ⊂ V//G the automorphism
group of the G-vector bundle π−1(U)×M . It turns out that AM is an affine group
scheme over V//G whose general fibre is a semidirect product of a unipotent group
by a product of GLn’s.

Assume, for example, that M is the trivial G-module, or more generally that
G acts on M via multiplication by a character. Then AM is isomorphic to the
“constant” group scheme GLn×V//G. This implies that every G-vector bundle V
on V whose zero fibre V0 is G-isomorphic to M is trivial, provided that every vector
bundle on V//G is trivial.

§ 7. G-Line Bundles

In the last paragraph we consider the special case of G-line bundles on G-
varieties, where G is an arbitrary algebraic group. This case has been studied by
different authors, and most of the following material can be found in the literature
(e.g. [Mag80], [Pop74]). For a more detailed exposition of these results we refer
to the forthcoming Seminar Notes [DMV].

Let X be an irreducible G-variety with quotient π : X → X//G. We denote by
O(X)∗ the group of invertible global functions on X and define E(X) := O(X)∗/C

∗.
By a result of Rosenlicht [Ro56], this group is always finitely generated. In
addition, the connected component G◦ of the unit element e ∈ G acts trivially on
E(X).

The character group X (G) of G is the subgroup of O(G)∗ of all algebraic group
homomorphisms G → C

∗. Again it has been shown by Rosenlicht [Ro56] that
for a connected group G, every invertible function f ∈ O(X)∗ with f(e) = 1
is automatically a character. In particular, O(G)∗ = C

∗ · X (G), and we have a

canonical isomorphism X (G)
∼
→ E(G).
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Proposition 7. In the following diagram the row and the column sequences
are exact:

1




y

E(X//G)




y

E(X)G 1




y





y

X (G) PicX//G




y





yπ∗

1 −−−−→ H1(G,O(X)∗)
µ

−−−−→ PicG X −−−−→ (Pic X)G





y





y

ρ

H1(G/G◦, E(X))
∏

x∈C
X (Gx)

In
∏

x∈C
X (Gx) the set C ⊂ X is a set of representatives of the closed orbits in X,

and the map ρ is obtained by associating to a line bundle L the characters of the
isotropy groups Gx on the fibres Lx, x ∈ C. As usual H1(G, ·) denotes the group
of algebraic cocycles modulo algebraic coboundaries, and the map µ is defined as
follows: Every cocycle γ : G → O(X)∗ determines a G-structure on the trivial
line bundle C × X, and one obtains isomorphic G-line bundles if and only if the
corresponding cocycles are equivalent.

Proof of Proposition 7. The first column is obtained from the exact se-
quence

1→ C
∗ → O(X)∗ → E(X)→ 1

by applying the G-fixed point functor and its derived functors H1(G, ·). The second
column is a reformulation of Proposition 3 (§ 3) for G-line bundles. The exactness
of the row is clear from the definition of the map µ. �

Remark 6. If X is normal and G connected, then the cokernel of the canonical
map PicG X → (Pic X)G is a torsion group. This follows from a result of Sumihiro
stating that, under our hypotheses, a suitable power of every line bundle admits a
G-linearization ([Sum74], [MF]).

We draw a number of corollaries (cf. [FI73], [Mag80], [Pop74]).
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Corollary 1. Assume that O(X)∗ = C
∗ and that XG 6= ∅. Then, in the

following diagram

1




y

PicX//G




y

γ

1 −−−−→ X (G)
α

−−−−→ PicG X
β

−−−−→ (Pic X)G





y
δ

∏

x∈C
X (Gx)

the row and the column are both exact, and the two compositions δ ◦ α and β ◦ γ
are both injective. In particular, if PicX = 0, then Pic(X//G) = 0 and X (G)

∼
→

PicG X.

(It clearly suffices to assume that the stabilizers Gx generate G.)

Example. For every G-action on an affine space A
n with a fixed point (e.g.

for every representation of G) we have Pic(An//G) = 0 and PicG A
n ∼
← X (G). If, in

addition, the quotient A
n//G is locally factorial (e.g. smooth), then it is factorial.

Corollary 2. Assume that π : X → Y is a principal G-bundle. Then we
have an isomorphism PicY

∼
→ PicG X and an exact sequence:

1 −→ E(Y ) −→ E(X)G −→ X (G) −→ PicG X −→ (Pic X)G λ
−→ Pic G

Here λ is defined in the following way: For every x ∈ X we get a line bundle
Lx ∈ Pic G by pulling back L via the orbit map g 7→ g ·x, and one shows that the
isomorphism class of Lx is independent of x ∈ X.

We remark that λ is surjective in case the principal bundle π : X → Y is locally
trivial in the Zariski-topology. In addition, PicG is always finite [Ro56].

Examples. (a) (Popov [Pop74]) Let G be a connected algebraic group and
H ⊂ G a closed subgroup. Then E(G) = X (G) has trivial G-action, and we obtain
an exact sequence

1→ E(G/H) → X (G)→ X (H)→ PicG/H → PicG→ Pic H.

In particular, if Pic G = 0, we have PicG/H ≃ X (H)/ ImX (G).

(b) Let G ⊂ GL(V ) be a finite subgroup containing no pseudo-reflections. Then
the principal stratum Vpr has a complement of codimension ≥ 2, and we get iso-
morphisms

X (G)
∼
−→ Pic (V//G)pr

∼
−→ ClV//G.

(Cl denotes the divisor class group.) Hence for a finite subgroup G ⊂ SL(V ) the
quotient V//G is factorial if and only if X (G) = 0.
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