G-VECTOR BUNDLES AND THE LINEARIZATION PROBLEM

Hanspeter Kraft

ABSTRACT. The following is an expanded version of my talk at the Montreal Conference on "Group Actions and Invariant Theory" where I gave a report on some old and new results about G-vector bundles on algebraic varieties and their connection with the Linearization Problem (4.1). This problem asks whether every algebraic action of a reductive algebraic group G on affine space \mathbb{A}^n is linearizable. A positive answer would imply that every G-vector bundle on \mathbb{A}^n is trivial (4.2). At the time of the conference the Linearization Problem was completely open. Since then SCHWARZ has constructed non-trivial G-vector bundles on some representation spaces, thus giving non-linearizable actions on affine spaces (see 4.3).

\S 1. G-Vector Bundles

Throughout the paper the base field is the field of complex numbers \mathbb{C} . Of course, it could be replaced by any other algebraically closed field of characteristic zero. Let G be an algebraic group and X a variety with an algebraic G-action $(g,x)\mapsto g\cdot x$. Recall that this means that the map $G\times X\to X$, $(g,x)\mapsto g\cdot x$, is a morphism of complex algebraic varieties. We then call X a G-variety. Typical examples are linear actions on vector spaces obtained from rational representations $\rho:G\to \mathrm{GL}(V)$, where rational means that ρ is an algebraic homomorphism.

DEFINITION. A *G-vector bundle* on X is a vector bundle \mathcal{V} on X with an algebraic G-action such that the following holds:

- (a) The projection $p: \mathcal{V} \to X$ is G-equivariant;
- (b) The action is linear on the fibres $\mathcal{V}_x := p^{-1}(x)$, (i.e. for every $g \in G$ and $x \in X$ the map $v \mapsto gv : \mathcal{V}_x \to \mathcal{V}_{gx}$ is linear).

It follows from the definition that for every $x \in X$ we obtain a rational representation of the isotropy group $G_x := \{g \in G \mid g \cdot x = x\}$ on the fibre \mathcal{V}_x of the G-vector bundle.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14L30, 14F05; Secondary 14D25, 14L15. Supported in part by SNF (Schweizerischer Nationalfonds)

The category of G-vector bundles on X will be denoted by $Vec_G(X)$. Homomorphisms, isomorphisms, direct sums and tensor products are defined in the usual way.

EXAMPLE. Every G-module M (i.e. finite dimensional rational representation of G) determines a G-vector bundle $\mathcal{V} := M \times X \xrightarrow{\mathrm{pr}} X$. A G-vector bundle is called trivial if it is isomorphic to a G-vector bundle of this form.

REMARK 1. If X is affine with coordinate ring $\mathcal{O}(X)$ the category $\operatorname{Vec}_G(X)$ is equivalent to the category $\operatorname{Proj}_G(\mathcal{O}(X))$ of $G\text{-}\mathcal{O}(X)$ -modules which are projective and of finite rank over $\mathcal{O}(X)$ and (locally finite and) rational as G-modules. The functor is given by taking global sections: $\mathcal{V} \mapsto \mathcal{V}(X)$. It is easy to see that any $P \in \operatorname{Proj}_G(\mathcal{O}(X))$ is also projective as a $G\text{-}\mathcal{O}(X)$ -module, i.e. a direct summand of a free $G\text{-}\mathcal{O}(X)$ -module $M \otimes_{\mathbb{C}} \mathcal{O}(X)$ (cf. [BH85, 4.2]).

§ 2. Some Examples

2.1. Family of representations. If the G-action on X is trivial, a G-vector bundle on X can be understood as an algebraic family of representations $(\mathcal{V}_x)_{x\in X}$ of G parametrized by X, in the following sense: Consider the set

$$\operatorname{Rep}_{\mathrm{n}}(G) := \{ \rho : G \to \operatorname{GL}_{\mathrm{n}}(\mathbb{C}) \mid \rho \text{ a representation} \}$$

of *n*-dimensional representations of G. It is a subset of the set of all morphisms $G \to \mathrm{M}_{\mathrm{n}}(\mathbb{C})$, which in turn can be identified with $\mathcal{O}(G) \otimes \mathrm{M}_{\mathrm{n}}(\mathbb{C})$:

$$\operatorname{Rep}_{n}(G) \subset \operatorname{Mor}(G, \operatorname{GL}_{n}(\mathbb{C})) = \mathcal{O}(G) \otimes \operatorname{M}_{n}(\mathbb{C}).$$

A map $\phi: X \to \operatorname{Rep}_{\mathbf{n}}(G)$, where X is a variety, is called *algebraic* (or a morphism) if the image of X in $\mathcal{O}(G) \otimes \operatorname{M}_{\mathbf{n}}(\mathbb{C})$ is contained in a finite dimensional subvector space U such that $\phi: X \to U$ is a morphism of varieties. It is easy to see that the G-vector bundle structures on the trivial bundle $\mathbb{C}^n \times X$ are in one-to-one correspondence with the algebraic maps $X \to \operatorname{Rep}_{\mathbf{n}}(G)$.

The action of $GL_n(\mathbb{C})$ on $M_n(\mathbb{C})$ by conjugation induces an action on $Rep_n(G)$ whose orbits are the equivalence classes of n-dimensional representations of G. For every orbit $O \subset Rep_n(G)$ its closure \overline{O} in $\mathcal{O}(G) \otimes M_n(\mathbb{C})$ is contained in $Rep_n(G)$, and $O = \overline{O}$ if and only if the corresponding representation is completely reducible (cf. [Kr, II.2.7 Satz 3]).

From now on we assume that G is reductive. Then every orbit of $\operatorname{Rep}_n(G)$ is closed in $\mathcal{O}(G) \otimes \operatorname{M}_n(\mathbb{C})$, and the number of orbits in $\operatorname{Rep}_n(G)$ is countable, and even finite provided the character group of G is finite (e.g. if G semisimple). It follows that for every algebraic map $\phi: X \to \operatorname{Rep}_n(G)$, X connected, the image of X is contained in a single $\operatorname{GL}_n(\mathbb{C})$ -orbit O. In addition, the stabilizer of a representation is a Levi-subgroup of $\operatorname{GL}_n(\mathbb{C})$, hence a product of GL_r 's, and therefore the orbit map $\operatorname{GL}_n(\mathbb{C}) \to O$ has a local section (with respect to the Zariski-topology). From this one easily obtains the following result; we will give a different proof suggested by G. Schwarz.

PROPOSITION 1. Let G be a reductive group and let V be a G-vector bundle on X, where G acts trivially on X.

- 1. V is locally trivial in the Zariski-topology. In particular, the representations V_x are all equivalent in case X is connected.
- 2. There is an isomorphism of G-vector bundles

$$\mathcal{V} \xrightarrow{\sim} \bigoplus_{\omega} M_{\omega} \otimes \mathcal{V}_{\omega},$$

where M_{ω} is a simple G-module and \mathcal{V}_{ω} a vector bundle on X (with trivial G-action).

PROOF. We may assume that X is connected. Let M be a simple G-module. It follows from the next lemma that

$$\mathcal{V}_M := (M^* \otimes \mathcal{V})^G$$

is a vector bundle over X. Furthermore, the canonical homomorphism $M \otimes \mathcal{V}_M \to \mathcal{V}$ is an injective G-homomorphism whose image is the M-isotypic component of \mathcal{V} . As a consequence we see that \mathcal{V} is isomorphic to the G-vector bundle $\bigoplus_M M \otimes \mathcal{V}_M$, where M runs through the simple G-modules occurring in a fibre of \mathcal{V} . This proves the proposition.

LEMMA 1. The fixed point set \mathcal{V}^G is a vector bundle over X.

PROOF. We may assume that X is irreducible and that \mathcal{V} is isomorphic to $X \times \mathbb{C}^n$ as a vector bundle. Then the projection $p: \mathcal{V} \to X$ is the quotient under the obvious action of $G \times \mathbb{C}^*$, and it follows from Luna's slice theorem that the fibres of $p: \mathcal{V}^G \to X$ are vector subspaces of \mathbb{C}^n of constant dimension d. Hence \mathcal{V}^G is a subvector bundle of \mathcal{V} . (In fact, $p: \mathcal{V}^G \to X$ corresponds to a morphism from X to $\operatorname{Grass}_d(n)$, the Grassmanian, and the canonical bundle on $\operatorname{Grass}_d(n)$ is locally trivial in the Zariski-topology.)

COROLLARY. Every G-vector bundle on X is trivial in case every vector bundle on X is trivial.

2.2. Homogeneous bundles. Now assume that X is a homogeneous G-variety, i.e. X = G/H, where H is a closed algebraic subgroup of G. It is well known that every G-vector bundle on G/H is of the form

$$G \star^H N \to G/H$$
.

Here N is an H-module and $G \star^H N$ is the orbit space $(G \times N)/H$, where the (right-)H-action is given by $(g,n) \cdot h := (gh, h^{-1} \cdot n)$. These bundles are usually called homogeneous vector bundles.

A G-vector bundle $G \star^H N$ is trivial if and only if the representation of H on N extends to a representation of G. This follows immediately from the remark below. As an example we see that every SL_2 -vector bundle on $\mathbb{C}^2 \setminus \{0\}$ (obvious SL_2 -action on $\mathbb{C}^2 \setminus \{0\}$) is trivial. In fact $\mathbb{C}^2 \setminus \{0\} \stackrel{\sim}{\leftarrow} \operatorname{SL}_2 / U$, where

$$U = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \xrightarrow{\sim} \mathbb{C}^+,$$

and every representation of U extends to a representation of SL_2 (cf. [Kr, III.3.9 Lemma]).

REMARK 2. For every quasi-affine H-variety Y the orbit space $G \star^H Y$ exists as an algebraic G-variety and is a fibre bundle over G/H with fibre Y. (Fibre bundle means that it is *locally trivial in the étale topology*.) This is clear if the H-action on Y extends to an action of G, because the isomorphism $G \times Y \to G \times Y$, $(g, y) \mapsto (g, g \cdot y)$, induces a G-isomorphism

$$G \star^H Y \xrightarrow{\sim} G/H \times Y$$

and the diagram

$$G \times Y \longrightarrow G \star^H Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \longrightarrow G/H$$

is a pullback. In general, every quasi-affine H-variety Y is a locally closed H-stable subvariety of a G-variety Z. Hence

$$G \star^H Y \hookrightarrow G \star^H Z \xrightarrow{\sim} G/H \times Z,$$

and the claim follows.

2.3. Principal bundles. Let us consider a principal G-bundle $\pi: X \to Y$. This means that X is a G-variety with all orbits isomorphic to G, that the fibres of π are G-orbits and that π is locally trivial in the étale topology, i.e. there is a surjective étale morphism $Y' \to Y$ and a G-isomorphism

$$G \times Y' \xrightarrow{\sim} X \times_Y Y' \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$Y' = X' \longrightarrow Y'$$

over Y'.

PROPOSITION 2. Let $\pi: X \to Y$ be a principal G-bundle. The pullback $\mathcal{W} \mapsto \pi^* \mathcal{W}$ defines an equivalence

$$\pi^* : \operatorname{Vec}(Y) \xrightarrow{\sim} \operatorname{Vec}_G(X).$$

Again, this is well known; it can be proved in several ways. In the next section we will consider a more general situation from which the proposition follows as a special case (see Proposition 3 in the next paragraph).

§ 3. Algebraic Quotients and Pullbacks

Let G be reductive and X a G-variety.

DEFINITION. A morphism $\pi: X \to Y$ is an (algebraic) quotient if π is constant on G-orbits and satisfies the following condition:

(Q) For every affine open subset $U \subset Y$ the inverse image $\pi^{-1}(U)$ is affine and $\pi^* : \mathcal{O}_Y(U) \xrightarrow{\sim} \mathcal{O}_X(\pi^{-1}(U))^G$ is an isomorphism.

If a quotient exists then it is unique; we will denote it by $\pi: X \to X/\!\!/ G$. The quotient map π has a number of remarkable properties (see [Kr, II.3.2] or [MF, Chap. 1, § 2]): It is G-closed, i.e. the image of a closed G-stable subset is closed, and G-separating, i.e. disjoint closed G-stable subsets have disjoint images. It follows from this that $X/\!\!/ G$ carries the quotient (Zariski-)topology and that every fibre of π contains a unique closed orbit. (Here we use the fact that every G-variety contains closed orbits.)

EXAMPLES. (a) If X is an affine G-variety then the quotient exists. It is given by $X/\!\!/G := \operatorname{Spec} \mathcal{O}(X)^G$, the maximal spectrum of the invariant ring $\mathcal{O}(X)^G$, which is a finitely generated \mathbb{C} -algebra by Hilbert's finiteness theorem (cf. [Kr, II.3.2])

- (b) The canonical morphism $\pi: \mathbb{C}^{n+1}\setminus\{0\}\to \mathbb{P}^n$ is the quotient under the scalar \mathbb{C}^* -action.
 - (c) Every principal G-bundle $\pi: X \to Y$ (2.3) is a quotient morphism.
- (d) Given any quotient $\pi: X \to X/\!\!/ G$ and a locally closed subvariety $Y \subset X/\!\!/ G$, then $\pi: \pi^{-1}(Y) \to Y$ is also a quotient.

Let us assume now that X is a G-variety which admits a quotient $\pi: X \to X/\!\!/ G$. If \mathcal{W} is a vector bundle on $X/\!\!/ G$ then the pullback $\pi^*\mathcal{W}$ is clearly a G-vector bundle on X, and we obtain the following diagram:

$$\pi^* \mathcal{W} \longrightarrow X$$

$$\downarrow_{\tilde{\pi}} \qquad \qquad \downarrow_{\pi}$$

$$\mathcal{W} \longrightarrow X /\!\!/ G$$

It follows that $\tilde{\pi}$ is a quotient, too. In fact, $\pi^* \mathcal{W} /\!\!/ G$ has a natural vector bundle structure and $\mathcal{W} \simeq \pi^* \mathcal{W} /\!\!/ G$ as a vector bundle over $X /\!\!/ G$. The following proposition characterizes the G-vector bundles which are obtained in this way.

PROPOSITION 3. A G-vector bundle V on X is isomorphic to a pullback π^*W if and only if it satisfies the following condition:

(PB) For every $x \in X$ such that the orbit Gx is closed, the isotropy group G_x acts trivially on the fibre \mathcal{V}_x .

In this case $V/\!\!/G$ is a vector bundle over $X/\!\!/G$ isomorphic to W.

(The following proof is due to F. Knop.)

PROOF. It is clear that a pullback bundle satisfies the condition (PB). For the other implication one easily reduces to the case where $X/\!\!/G$ (and hence X) is affine. Then the global sections $P := \mathcal{V}(X)$ form a projective $G\text{-}\mathcal{O}(X)$ -module (see Remark 1 in § 1). Suppose that the fixed elements P^G form a projective $\mathcal{O}(X)^G$ -module. (Recall that $\mathcal{O}(X)^G = \mathcal{O}(X/\!\!/G)$.) Then $P^G \otimes_{\mathcal{O}(X/\!\!/G)} \mathcal{O}(X) \xrightarrow{\sim} P$, where the isomorphism is given by $p \otimes f \mapsto fp$, and the proposition follows. Now the condition (PB) implies that for every closed orbit Gx the restriction $\mathcal{V}|_{Gx}$ is trivial:

$$\mathcal{V}|_{Gx} \xrightarrow{\sim} \mathbb{C}^r \times Gx,$$

where G acts trivially on \mathbb{C}^r . This means that $P \otimes_{\mathcal{O}(X)} \mathcal{O}(Gx) \xrightarrow{\sim} \mathcal{O}(Gx)^r$. Using the canonical surjective homomorphism $P \twoheadrightarrow P \otimes_{\mathcal{O}(X)} \mathcal{O}(Gx)$ and taking invariants we obtain a surjective homomorphism

$$P^G \longrightarrow P^G \otimes_{\mathcal{O}(X/\!\!/ G)} \mathcal{O}(\pi(x)) \simeq \mathbb{C}^r.$$

Now one shows that the kernel of this map is $\mathbf{m}_y P^G$, where \mathbf{m}_y denotes the maximal ideal of the point $y = \pi(x)$, hence $P^G/\mathbf{m}_y P^G \simeq \mathbb{C}^r$ for all $y \in X/\!\!/G$. Since P^G is a finitely generated $\mathcal{O}(X/\!\!/G)$ -module this implies the claim.

Remark 3. This proves Proposition 2 of the previous paragraph.

COROLLARY. Assume that the isotropy groups G_x generate G. Then a vector bundle W on $X/\!\!/ G$ is trivial if and only if π^*W is a trivial G-vector bundle.

PROOF. If $\pi^* \mathcal{W} \simeq M \times X$, then every isotropy group G_x acts trivially on M. Therefore it follows from the assumption that M is the trivial G-module, and so $\mathcal{W} \simeq \pi^* \mathcal{W} /\!\!/ G \simeq M \times X /\!\!/ G$.

§ 4. The Linearization Problem

4.1. Linearizable actions. An action of G on the affine space \mathbb{A}^n is called *linearizable* if it becomes linear after a polynomial change of coordinates, i.e. there is a G-equivariant algebraic isomorphism $\mathbb{A}^n \xrightarrow{\sim} V$, where V is a representation of G. In the last years a lot of work has been invested in solving the following interesting problem (a positive response has been conjectured by KAMBAYASHI [Ka79, Conjecture 3.1]):

LINEARIZATION PROBLEM. Is every action of a reductive group G on affine space \mathbb{A}^n linearizable?

Very recently SCHWARZ gave the first examples of non-linearizable reductive group actions on affine space [Sch89] (see 4.3). Before that, a number of "small" cases have been handled positively, using various methods (see [KS89]). We refer to [Kr89] for a report about the Linearization Problem.

4.2. Equivariant Serre-Problem. The construction of the counterexamples uses the following result which relates the Linearization Problem with the question whether every G-vector bundle on a representation space is trivial or not (see [BH87]).

PROPOSITION 4. Assume that the linearization problem has a positive answer, and let V be a representation of the reductive group G. Then

- (a) Every G-vector bundle on V is trivial.
- (b) Every vector bundle on V//G is trivial.

PROOF. Let $p: \mathcal{V} \to V$ be a G-vector bundle on V. As a variety \mathcal{V} is an affine space, because every vector bundle on \mathbb{A}^n is trivial (Theorem of QUILLEN and SUSLIN, see [Qu76]). On \mathcal{V} we have an action of $\hat{G} := \mathbb{C}^* \times G$, where \mathbb{C}^* acts by scalar multiplication on the fibres of \mathcal{V} . It follows that in the diagram

the map p is the quotient by \mathbb{C}^* . Hence the composition $\pi \circ p$ is the quotient by \hat{G} . By assumption we can linearize the action of \hat{G} on \mathcal{V} and obtain a \hat{G} -isomorphism

$$\varphi: \mathcal{V} \stackrel{\sim}{\longrightarrow} W,$$

where W is a representation of \hat{G} . Consider the \hat{G} -stable decomposition $W=W^{\mathbb{C}^*}\oplus F$. It follows from Luna's slice theorem [**Lu73**] that \mathbb{C}^* acts on F by scalar multiplication. Hence the linear projection $pr:W\to W^{\mathbb{C}^*}$ is the quotient by \mathbb{C}^* , and W is the trivial G-vector bundle $F\times W^{\mathbb{C}^*}$ on $W^{\mathbb{C}^*}$. This shows that φ induces the following isomorphisms:

$$\begin{array}{cccc} \mathcal{V} & \stackrel{\varphi}{\longrightarrow} & W \\ & & \downarrow^p & & \downarrow^{p'} \\ V & \stackrel{\bar{\varphi}}{\longrightarrow} & W^{\mathbb{C}^*} \\ & \downarrow^{\pi} & & \downarrow^{\pi} \\ V /\!\!/ G & \stackrel{\sim}{\longrightarrow} & W^{\mathbb{C}^*} /\!\!/ G = W /\!\!/ \hat{G} \end{array}$$

In particular, we obtain \mathbb{C}^* -equivariant isomorphisms

$$\varphi: \mathcal{V}_x \xrightarrow{\sim} \{\bar{\varphi}(x)\} \times F.$$

Since the \mathbb{C}^* -action is by scalar multiplication on both sides this means that φ is a linear isomorphism. Therefore we obtain a G-vector bundle isomorphism

$$\mathcal{V} \xrightarrow{\sim} \bar{\varphi}^* W = F \times V.$$

This proves (a), and (b) is a consequence of (a) by the corollary of Proposition 3 in $\S 3$.

4.3. Counterexamples. Let V be a representation of the reductive group G. It is not hard to see that every G-line bundle on V is trivial (see Corollary 1 of Proposition 7). For G-vector bundles of higher rank this is not true, due to the counterexamples of SCHWARZ. Let V_i denote the irreducible representation of $SL_2(\mathbb{C})$ of dimension i+1 and consider the adjoint representation $V=V_2$.

PROPOSITION 5 ([Sch89]). For every $i \geq 3$ there are infinitely many non-isomorphic SL_2 -vector bundles \mathcal{V} on V whose zero fibre \mathcal{V}_0 is SL_2 -isomorphic to V_i .

By Proposition 4 above this implies that there are non-linearizable $\mathbb{C}^* \times \mathrm{SL}_2$ -actions on \mathbb{A}^n for every $n \geq 7$. Schwarz showed in addition that the underlying SL_2 -actions are also non-linearizable $(n \neq 8)$.

REMARK 4. It can be shown that all these examples are holomorphically trivial G-vector bundles (see [Sch89]). In particular, the corresponding SL_2 -actions can be linearized if we allow a holomorphic change of coordinates. Clearly, every G-vector bundle on V is trivial in the differentiable setting, since V has an obvious G-retraction to the origin.

§ 5. Some Results

In this paragraph we assume that G is reductive.

5.1. Stability. Let X be a G-variety. A G-vector bundle \mathcal{V} on X is called stably trivial if there is a trivial G-vector bundle $\mathcal{V}_0 = M \times X$ such that $\mathcal{V} \oplus \mathcal{V}_0$ is trivial. The following result is due to BASS-HABOUSH and THOMASON, see [BH87].

Theorem 1. Every G-vector bundle on a representation space V is stably trivial.

In fact their results are more general and are expressed in terms of algebraic K-Theory. In view of Proposition 4 we might ask the following question:

Problem. Is it true that every vector bundle on $V/\!\!/ G$ is stably trivial or even trivial?

5.2. Small quotients. Let V be a representation of G. If every G-invariant function on V is a constant, i.e. $V/\!\!/G = \{*\}$, then every G-vector bundle on V is trivial. This is an easy consequence of Luna's slice theorem; a more general result will be given in Theorem 3. For a one-dimensional quotient we have the following result.

THEOREM 2. Let V be a representation of G with dim $V/\!\!/G = 1$. Assume that the generic orbit is closed and has trivial stabilizer. Then every G-vector bundle on V is trivial.

This can be proven using methods developed in joint work with Schwarz [KS89], where we study the Linearization Problem for actions with a one-dimensional quotient.

5.3. Fix-pointed actions. An action of G on X is called *fix-pointed* if every closed orbit in X is a fixed point. Such actions have been studied by BASS and HABOUSH. They obtained the following result ([BH85, 10.2], cf. [Kr89, § 5.5]).

THEOREM 3. Let X be a fix-pointed G-variety which admits a quotient $\pi: X \to X/\!\!/ G$. Then π induces an isomorphism $X^G \xrightarrow{\sim} X/\!\!/ G$, and we have an equivalence

$$\operatorname{Vec}_G(X) \xrightarrow{\sim} \operatorname{Vec}_G(X^G)$$

given by restriction, i.e. every G-vector bundle on X is of the form $\bigoplus M_{\omega} \otimes \pi^* \mathcal{V}_{\omega}$, where the M_{ω} are simple G-modules and the \mathcal{V}_{ω} are vector bundles on $X/\!\!/ G$.

In particular, we obtain the following corollary:

COROLLARY. Let X be as above and assume that every vector bundle on $X/\!\!/ G$ (or on X) is trivial. Then every G-vector bundle on X is trivial.

Typical examples for the corollary are:

- 1. Fix-pointed actions on \mathbb{A}^n ;
- 2. Actions on normal affine varieties with a fixed point and only constant invariants.
- **5.4.** Tori. The last result in this section deals with tori. We refer to [Kr89, § 7] for the notation used below.

THEOREM 4. Let V be a representation of a torus T. Assume that the principal stratum $(V/\!\!/ G)_{pr}$ has a complement of codimension ≥ 2 and that the quotient $V/\!\!/ G$ is (locally) factorial. Then $V/\!\!/ G$ is smooth, $\pi: V \to V/\!\!/ G$ has a section and every T-vector bundle on V is trivial.

Outline of Proof. One first shows that the fibre bundle $\pi: V_{\rm pr} \to (V/\!\!/ G)_{\rm pr}$ is trivial. We will see in the next section (6.2) that any G-vector bundle $\mathcal V$ on V is locally trivial over the quotient $V/\!\!/ G$. The group functor of automorphisms of $\mathcal V$ is represented by an algebraic group scheme $\mathfrak A$ over $V/\!\!/ G$. The triviality of the fibre bundle over $(V/\!\!/ G)_{\rm pr}$ implies that $\mathfrak A|_{(V/\!\!/ G)_{\rm pr}}$ is "constant" with fibre $\mathfrak A_0$ isomorphic to a product of GL_n 's. Hence $\mathcal V|_{(V/\!\!/ G)_{\rm pr}}$ can be understood as a principal bundle with structure group $\mathfrak A_0$. Now the codimension 2 condition can be used to show that this bundle has an extension to all of $V/\!\!/ G$, hence is trivial.

§ 6. Some Methods

In this section we assume again that G is reductive.

6.1. Equivariant Nakayama Lemma. The following result can be found in [BH85].

LEMMA 2. Let X be an affine G-variety, $Y \subset X$ a closed G-stable subvariety and V, W two G-vector bundles on X.

- 1. Every G-homomorphism $\varphi: \mathcal{V}|_{Y} \to \mathcal{W}|_{Y}$ extends to a G-homomorphism $\tilde{\varphi}: \mathcal{V} \to \mathcal{W}$.
- 2. Assume that all closed orbits are contained in Y. Then the extension $\tilde{\varphi}$ of φ is unique.

It is easy to see that this lemma implies Theorem 3 of the previous paragraph and its corollary.

6.2. Local triviality. In general we cannot expect that G-vector bundles are locally trivial, i.e. that there is a covering $X = \bigcup U_i$ by G-stable Zariski-open sets U_i such that the restrictions to the U_i 's are trivial. In fact, we have seen in 2.2 that a G-vector bundle $G \star^H N$ on the homogeneous space G/H is trivial if and only if the representation of H on N extends to a representation of G.

Nevertheless, the situation is different when the base X is a representation space:

Proposition 6. Every G-vector bundle on a representation space V of G is locally trivial.

PROOF. Consider a closed orbit Gx in V. Then $\mathcal{V}|_{Gx} \overset{\sim}{\to} G \star^H W$, where $H := G_x$ and $W := \mathcal{V}_x$. Now V^H is a linear subspace, and the H-vector bundle $\mathcal{V}|_{V^H}$ is trivial by the corollary of 2.1 Proposition 1: $\mathcal{V}|_{V^H} \overset{\sim}{\to} W \times V^H$. Since $0 \in V^H$, the representation of H on W extends to a representation of G, and therefore $\mathcal{V}|_{Gx} \overset{\sim}{\to} G/H \times W$ is trivial. By Lemma 2(a) above this isomorphism extends to a G-homomorphism $\mathcal{V} \to W \times V$ which is an isomorphism in a neighbourhood of Gx.

Remark 5. In the proof above we only needed the following two facts about the underlying affine variety X:

- 1. $X^G \neq \emptyset$;
- 2. For every isotropy group H of a point of a closed orbit the fixed point set X^H is connected.
- **6.3. Cohomology.** As a consequence of the proposition above one shows that the isomorphism classes of G-vector bundles \mathcal{V} on a representation space V whose fibre \mathcal{V}_0 over the origin is isomorphic to a given G-module M, can be described by the non-abelian cohomology set

$$\mathrm{H}^1(V/\!\!/G,\mathfrak{A}_M),$$

where \mathfrak{A}_M is the automorphism group scheme of the trivial G-vector bundle $M \times V$, representing the functor which associates to every $U \subset V/\!\!/ G$ the automorphism group of the G-vector bundle $\pi^{-1}(U) \times M$. It turns out that \mathfrak{A}_M is an affine group scheme over $V/\!\!/ G$ whose general fibre is a semidirect product of a unipotent group by a product of GL_n 's.

Assume, for example, that M is the trivial G-module, or more generally that G acts on M via multiplication by a character. Then \mathfrak{A}_M is isomorphic to the "constant" group scheme $\mathrm{GL_n} \times V/\!\!/ G$. This implies that every G-vector bundle $\mathcal V$ on V whose zero fibre $\mathcal V_0$ is G-isomorphic to M is trivial, provided that every vector bundle on $V/\!\!/ G$ is trivial.

\S 7. G-Line Bundles

In the last paragraph we consider the special case of G-line bundles on G-varieties, where G is an arbitrary algebraic group. This case has been studied by different authors, and most of the following material can be found in the literature (e.g. [Mag80], [Pop74]). For a more detailed exposition of these results we refer to the forthcoming Seminar Notes [DMV].

Let X be an irreducible G-variety with quotient $\pi: X \to X/\!\!/ G$. We denote by $\mathcal{O}(X)^*$ the group of invertible global functions on X and define $E(X) := \mathcal{O}(X)^*/\mathbb{C}^*$. By a result of ROSENLICHT [**Ro56**], this group is always finitely generated. In addition, the connected component G° of the unit element $e \in G$ acts trivially on E(X).

The character group $\mathcal{X}(G)$ of G is the subgroup of $\mathcal{O}(G)^*$ of all algebraic group homomorphisms $G \to \mathbb{C}^*$. Again it has been shown by ROSENLICHT [**Ro56**] that for a connected group G, every invertible function $f \in \mathcal{O}(X)^*$ with f(e) = 1 is automatically a character. In particular, $\mathcal{O}(G)^* = \mathbb{C}^* \cdot \mathcal{X}(G)$, and we have a canonical isomorphism $\mathcal{X}(G) \xrightarrow{\sim} E(G)$.

Proposition 7. In the following diagram the row and the column sequences are exact:

In $\prod_{x\in\mathcal{C}} \mathcal{X}(G_x)$ the set $\mathcal{C}\subset X$ is a set of representatives of the closed orbits in X, and the map ρ is obtained by associating to a line bundle \mathcal{L} the characters of the isotropy groups G_x on the fibres \mathcal{L}_x , $x\in\mathcal{C}$. As usual $\mathrm{H}^1(G,\cdot)$ denotes the group of algebraic cocycles modulo algebraic coboundaries, and the map μ is defined as follows: Every cocycle $\gamma:G\to\mathcal{O}(X)^*$ determines a G-structure on the trivial line bundle $\mathbb{C}\times X$, and one obtains isomorphic G-line bundles if and only if the corresponding cocycles are equivalent.

PROOF OF PROPOSITION 7. The first column is obtained from the exact sequence

$$1 \to \mathbb{C}^* \to \mathcal{O}(X)^* \to E(X) \to 1$$

by applying the G-fixed point functor and its derived functors $H^1(G, \cdot)$. The second column is a reformulation of Proposition 3 (§ 3) for G-line bundles. The exactness of the row is clear from the definition of the map μ .

REMARK 6. If X is normal and G connected, then the cokernel of the canonical map $\operatorname{Pic}_G X \to (\operatorname{Pic} X)^G$ is a torsion group. This follows from a result of SUMIHIRO stating that, under our hypotheses, a suitable power of every line bundle admits a G-linearization ([Sum74], [MF]).

We draw a number of corollaries (cf. [FI73], [Mag80], [Pop74]).

COROLLARY 1. Assume that $\mathcal{O}(X)^* = \mathbb{C}^*$ and that $X^G \neq \emptyset$. Then, in the following diagram

$$\begin{array}{c}
1\\
\downarrow\\
\operatorname{Pic} X /\!\!/ G\\
\downarrow^{\gamma}\\
1 \longrightarrow \mathcal{X}(G) \stackrel{\alpha}{\longrightarrow} \operatorname{Pic}_{G} X \stackrel{\beta}{\longrightarrow} (\operatorname{Pic} X)^{G}\\
\downarrow^{\delta}\\
\prod_{x \in \mathcal{C}} \mathcal{X}(G_{x})
\end{array}$$

the row and the column are both exact, and the two compositions $\delta \circ \alpha$ and $\beta \circ \gamma$ are both injective. In particular, if $\operatorname{Pic} X = 0$, then $\operatorname{Pic}(X/\!\!/G) = 0$ and $\mathcal{X}(G) \stackrel{\sim}{\to} \operatorname{Pic}_G X$.

(It clearly suffices to assume that the stabilizers G_x generate G.)

EXAMPLE. For every G-action on an affine space \mathbb{A}^n with a fixed point (e.g. for every representation of G) we have $\operatorname{Pic}(\mathbb{A}^n/\!\!/ G) = 0$ and $\operatorname{Pic}_G \mathbb{A}^n \overset{\sim}{\leftarrow} \mathcal{X}(G)$. If, in addition, the quotient $\mathbb{A}^n/\!\!/ G$ is locally factorial (e.g. smooth), then it is factorial.

COROLLARY 2. Assume that $\pi: X \to Y$ is a principal G-bundle. Then we have an isomorphism $\operatorname{Pic} Y \xrightarrow{\sim} \operatorname{Pic}_G X$ and an exact sequence:

$$1 \to E(Y) \to E(X)^G \to \mathcal{X}(G) \to \operatorname{Pic}_G X \to (\operatorname{Pic} X)^G \xrightarrow{\lambda} \operatorname{Pic} G$$

Here λ is defined in the following way: For every $x \in X$ we get a line bundle $L_x \in \operatorname{Pic} G$ by pulling back L via the orbit map $g \mapsto g \cdot x$, and one shows that the isomorphism class of L_x is independent of $x \in X$.

We remark that λ is surjective in case the principal bundle $\pi: X \to Y$ is locally trivial in the Zariski-topology. In addition, $\operatorname{Pic} G$ is always finite [**Ro56**].

EXAMPLES. (a) (POPOV [Pop74]) Let G be a connected algebraic group and $H \subset G$ a closed subgroup. Then $E(G) = \mathcal{X}(G)$ has trivial G-action, and we obtain an exact sequence

$$1 \to E(G/H) \to \mathcal{X}(G) \to \mathcal{X}(H) \to \operatorname{Pic} G/H \to \operatorname{Pic} G \to \operatorname{Pic} H.$$

In particular, if $\operatorname{Pic} G = 0$, we have $\operatorname{Pic} G/H \simeq \mathcal{X}(H)/\operatorname{Im} \mathcal{X}(G)$.

(b) Let $G \subset \operatorname{GL}(V)$ be a finite subgroup containing no pseudo-reflections. Then the principal stratum V_{pr} has a complement of codimension ≥ 2 , and we get isomorphisms

$$\mathcal{X}(G) \xrightarrow{\sim} \operatorname{Pic}(V/\!\!/G)_{\operatorname{pr}} \xrightarrow{\sim} \operatorname{Cl}V/\!\!/G.$$

(Cl denotes the divisor class group.) Hence for a finite subgroup $G \subset SL(V)$ the quotient $V/\!\!/ G$ is factorial if and only if $\mathcal{X}(G) = 0$.

References

- [BH85] Bass, H., Haboush, W., Linearizing certain reductive group actions, Trans. AMS 292 (1985), 463–482.
- [BH87] Bass, H., Haboush, W., Some equivariant K-theory of affine algebraic group actions, Comm. in Algebra 15 (1987), 181–217.
- [FI73] Fossum, R., Iversen, B., On Picard groups of algebraic fibre spaces, J. pure and appl. Algebra 3 (1974), 269–280.
- [Ka79] Kambayashi, T., Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra **60** (1979), 439–451.
- [Kr] Kraft, H., Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik **D1**, Vieweg-Verlag, Braunschweig, 1985.
- [Kr89] Kraft, H., Algebraic automorphisms of affine spaces, In: "Topological methods in algebraic transformation groups." Progress in Mathematics, Birkhäuser Verlag (to appear).
- [KPR86] Kraft, H., Petrie, T., Randall, J., Quotient varieties, Preprint 1986 (to appear in Adv. math.).
- [KS89] Kraft, H., Schwarz, G., Linearizing reductive group actions on affine space with onedimensional quotient, Proceedings of a Conference on Group Actions and Invariant Theory, Montreal 1988, (in this volume).
- [DMV] Kraft, H., Slodowy, P., Springer, A. T., Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar Notes (to appear).
- [Lu73] Luna, D., Slices étales, Bull. Soc. Math. France, Mém. 33 (1973), 81–105.
- [Ma80] Magid, A. R., Picard groups of rings of invariants, J. pure appl. Algebra 17 (1980), 305–311.
- [MF] Mumford, D., Fogarty, J., Geometric Invariant Theory, 2nd edition, Ergeb. Math. und Grenzgeb. 34, Springer-Verlag, New York-Heidelberg, 1982.
- [Po74] Popov, V. L., Picard groups of homogeneous spaces of linear algebraic groups and onedimensional homogeneous vector bundles, Math. USSR Izvestija 8 (1974), 301–327.
- [Qu76] Quillen, D., Projective modules over polynomial rings, Invent. math. 36 (1976), 167–171.
- [Ro56] Rosenlicht, M., Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–403.
- [Ro61] Rosenlicht, M., Toroidal algebraic groups, Proc. Amer. Math. Soc. 12 (1961), 984–988.
- [Sch89] Schwarz, G., Exotic algebraic group actions, Preprint 1989.
- [Su74] Sumihiro, H., Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.

Universität Basel, Mathematisches Institut, Rheinsprung 21, CH-4051 Basel, Switzerland