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Introduction
Let G be a reductive algebraic group and X an algebraic G-variety which admits 
a quotient TT : X —> X//G. In this article we describe several results concerning 
the Picard group Pic(X//G) of the quotient and the group Picc(-X") of G-line 
bundles on X . For some further development of the subject we refer to the 
survey articles [Kr89a], [Kr89b].

We also give the proofs of some results which have been used in our 
first article "Local Properties of Algebraic Group Actions" in this volume; it 
will be quoted by [LP].
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§ 1 Two Results of ROSENLICHT
We first describe two results about the group of invertible functions on an 
irreducible algebraic variety which are due to ROSENLICHT [Ro61, Theorems 1, 
2, and 3]. They hold for an algebraically closed field k of arbitrary characteristic.

1.1. Let X be an irreducible algebraic variety. We denote by O(X)* the group 
of invertible regular functions on JC, i.e., morphisms X —> k*.

Proposition (cf. [FI74, Lemma 2.1]. Let X, Y be two irreducible algebraic 
varieties. Then the canonical map

O(X}* x O(Y}" —* O(X x Y }* 

is surjective.

PROOF: We choose normal points x 0 6 X and y0   Y . Let / e O(X x Y)*, 
and consider the function

F : X x Y —> k *, F(x,y) := f(xo,yo)~ l f(x,y0 )f(xo,y).

We have to show that F = f. For this it is sufficient to prove that these two 
functions coincide in a neighborhood of (x 0 ,yo) of the form U x V, where 
U C X , V C Y are open subsets. Hence we can assume that X and Y are both 
affine and normal.

Let X , Y be normal projective varieties which contain X and Y as 
open subsets, and consider / and F as rational functions on X x Y. By con 

struction, the divisor f -p ] of the rational function  £ 6 k(X x Y } has a support

contained in ((X \ X ) x Y) U (X x (Y \ F )). Hence, it is a sum of divisors 
of the form D x Y and X x E where D and E are irreducible components of 
X -^ X and Y \ Y (of codimension 1), respectively. If -^ has a zero of order

d > 0 along D x F, then -j? is regular on an open set U which meets D x {yo}, 
and vanishes on U D (D x {yo})- But /(a;,yo) = F (x ,yo) f r all x £ X which 
leads to a contradiction. Similarly, we see that -£ cannot have poles on D xY. 
Interchanging the roles of X and Y i t follows that the divisor of -p is zero, i.e.,
i = i -  

1.2. Proposition (cf. [FI74, Corollary 2.2]). Let G be a connected algebraic 
group. Then every regular function f : G —>• k* whose value at the unit element 
e 6 G is 1, is a character.

PROOF: It follows from the proposition above that there exist functions n, r% (E. 
O(G)* such that /(<7i<?2) = ri(<7i) r2(<72) f r all <7i,<72 £ G . Multiplying T I and 
r2 by a scalar we may assume that rj(e) = r2(e) = 1. But this implies that 
/ = n (i = 1 ,2) and the claim follows. d
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1.3. For an irreducible variety X we denote by E(X) the quotient O(X}*/k*. 

Proposition, ( i) The group E(X] is free abelian and finitely generated.

(ii) If X is a G-variety where G is connected linear algebraic group, then 
the canonical action of G on E(X) is trivial.

PROOF: (i) If X 1 is a nonempty quasi-projective open subset of X consisting of 
normal points, then O(X}* is a subgroup of O(X'_£. Hence we may assume that 
X is normal and quasi-projective: X C Pn . Let X denote the normalisation of 
the closure of X in P n .

If D C X is a closed irreducible subvariety of codimension 1, i.e., an 
irreducible divisor, then the local ring OD -% is the valuation ring of a discrete 

normalized valuation VD of the field k(X) of rational functions on X . (Here 
we use the normality of X, [BAC7].) Denote by D\,Di, ..., Dm the irreducible 
components of X \ X which are of codimension 1 in X .

Let /   O(X)*. If I/D,(/) > 0 for t = l,2,...,m, thenj/p(/) > 0 
for every irreducible divisor D , and so / is a regular function on X, hence a 
constant. This shows that the homomorphism

div :

induces an injection of E(X) into a finitely generated free abelian group. This 
implies the first claim.

(ii) Let / G O(X)* and consider the morphism

GxX—>fc*, (g,x)~f(g-l x). 

By Proposition 1.1 there exist p £ O(G)* and q e O(X}* such that

f(g- l x) = P(g}q(x), (geG,x£X) 
p(e) = 1.

Putting g = e we obtain / = q . Hence, / is invariant modulo the constant 
functions. D

§2 G-Linearization of the Trivial Bundle
From now on we assume that the base field k is algebraically closed and of 
characteristic zero. Nevertheless, the results of the next two paragraphs hold 
in arbitrary characteristic and most of the proofs can be carried over to the 
general case.

2.1. Let G be a linear algebraic group and X an irreducible G-variety. Recall 
that a G-linearization of a line bundle L on X is a lifting of the G-action to L
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which is linear on the fibers; see our first article "Local Properties of Algebraic 
Group Actions" [LP]. A line bundle L on X together with a (^-linearization is 
called a G -line bundle; we denote by Picc(X) the set of isomorphism classes 
of G-line bundles on X . It has a group structure given by the tensor product. 
Forgetting the G-linearization we obtain a canonical homomorphism

v : PicG(X) -» P ic(X)

whose kernel consists of the (^-linearizations of the trivial bundle on X ( up to 
isomorphism). Such an action is given by a morphism

c:GxX — >k* = GL(l,fc) 

satisfying

c(gh,x) = c(g,hx)c(h, x ), g ,h£G,x£X. ( 1) 

Define

T.G^OW by 7(g)(x):=c(g-\x). 

Then the equality (1) becomes the usual cocycle condition:

9,h<=G, ( 2)

where the action of G on the functions O(X) is defined by ( 9 u)(x) := u(g~ l x) 
(g € G, u G O(X},x £ X ). Changing the trivialization by an isomorphism

Xxk^+Xxk, (x,A)i-+(x,«(x)A)

where u 6 O(X)* , transforms c(g,x) into c(g,x)u(gx)u(x)~ l . Hence, 7 is trans 
formed into an equivalent cocycle g i  > c(gr) 9 u u~ l in the usual sense. It follows 
that kerf is given by the group H^ (G, O(X)*) of classes of algebraic cocycles. 
(By definition, a map c : G — + O(X)* is algebraic, if the corresponding map 
G x X — > £*, (g,x) *-* c(g}(x] is a morphism.)

2.2. Lemma. There is an exact sequence 

0 -» H

If X is normal it has an extension by the homomorphism Pic(X) -^ Pic(G), 
defined by

where <f> : G x X — »  X is the G-action, px '• G x X — > A' <Ae projection and 
XQ £. X an arbitrary point.

PROOF: The first part is clear from what we said above. Also, by definition, the 
image of the map v are the G-linearizable line bundles on X . If X is normal 
it follows from [LP, Lemma 2.3 and Lemma 4.1] that the kernel of p is the 
subgroup of G-linearizable bundles, too. D
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2.3. Proposition. There is a long exact sequence
l_>fc* _» (0(X)*)G -» E(X}G -> #(G) -»

-+ Hj^G.OC.rn-'H'CG/G0 ,^*)) (3)

where X(G) is the character group of G and G° the connected component of 
the unit element of G.

PROOF: We start with the short exact sequence

!-»**-» O(X)* -* E(X) -» 1 (4)

of (7-modules, and show that (3) is the "algebraic part" of the long exact 
cohomology sequence of (4). Consider first the homomorphism

6:E(X)G -> H^G,**)

which associates to p £ E(X}G the class of the cocycle 6(p) : g i-> 9pp~* , where 
p € O(X)* is a representative of p. It is clear that 8(p) belongs to-C?(G)*. Hence 
6(p) is a character of (?, because G acts trivially on fc*. It is also obvious that 
the inclusion Jb* «-» O(X)* induces a homomorphism X(G) -» H^g(G, O(X)). 

Finally, let 7 : G —+ O(X}* be an algebraic cocycle, and denote by 
7 : G — * E(X) the composition of 7 with the projection O(X)* — » E(X). By 
Proposition 1.1 there exist </?   O(G°)* and u G O(J'C)* such that 7(0) = <p(g)u 
for all g 6 G . It is easy to see from the cocycle condition (2) for 7 that u is con 
stant, i.e., 7JG-0 = 1. In addition, since G° acts trivially on E(X) (Proposition 
l.Sii), the cocycle condition -y(gh) = 9 'j(h) j(g) implies c(G°h) = c(h~). Hence, 
the projection O(X)* — » E(X) induces a homomorphism H^ ( G, O(X)*) —>
E1 (G/G°,E(X)}.

Thus we have established the existence of the sequence (3); it remains 
to prove the exactness. Since the image of 8 is contained in X (G) it is clearly 
exact at X(G). For the exactness at H^ we remark that every d e H^G, fc*) 
whose image is in H^ , belongs to X(G). d

§ 3 Picard Group of Homogeneous Spaces

3.1. In this paragraph the group G is assumed to be connected. Let H be a 
closed subgroup of G . Recall that we have a canonical homomorphism

S : X(H) — * Pic G/H, X » Ex
whose image is the set of G-linearizable bundles on G/H (see [LP, Example 
2.1]). In fact, Ex := (G x k)/H is a G-line bundle on G/H and X (H) -^

3.2. Proposition, ( i) The sequence

X(G) -^ X(H) -2-* Pic(G/H) -^ Pic(G)
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is exact.

(ii) If H is solvable and connected then TT* is surjective.

PROOF: (i) We show the exactness at Pic(G/H) and leave the rest to the reader 
(cf. [Po74, p. 316], [FI74, Proposition 3.1]). Let L € Pic(G/H) and denote by 
<p:G x G/H -> G/H the action of G on G/H. By [LP, Lemma 4.2] we know 
that

where

M : = <p*(L)\Gx{eH} ~**(L) 
N := y 

Hence

L is G-linearizable 

L belongs to the image of £ 

by what we said above.

(ii) If H is connected and solvable then TT : G — > G/H is locally trivial in the 
Zariski- topology ([Se58, 4.4 proposition 14]): There is an affine open subset U of 
G/H such that ir~ l (U) ~ U x H . Let us denote by DI, . . . , Dn the irreducible 
components of the complement of U in G/H . Then we obtain the following 
commutative diagram with exact rows (see [Ha77, Chap. II, Proposition 6.5]):

» Cl(G/H) -» Cl(tf) -* 0

 Z7T- 1 (A') -* C1(G) -* Cl(TT~ l (U)) -* 0

Since ff , as a variety, is isomorphic to k * p x fc 9 (see [LP, 4.1]) it follows from 
[Ha77, Chap. II, Proposition 6.6] that TT^ is an isomorphism, and so TT* is 
surjective. D

3.3. A connected algebraic group G i s called s imply connected if every finite 
covering of G is trivial. It follows that every line bundle on G /H is linearizable 
where H is any closed subgroup of G .

Corollary. Let G be semisimple and simply connected and let B C G be a 
Borel subgroup. Then £ : X(B) — •» P ic(G/B) is an isomorphism.

PROOF: In fact, if G is semisimple then X (G} = 1 , and G simply connected 
implies that PicG = 0 by [LP, Proposition 4.6]. Now the claim follows. D
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§ 4 Picard Group of Quotients

4.1. Let G be a reductive algebraic group and X an irreducible G- variety. Recall 
that a morphism TT : X — » Y is a quotient of X by G if

(a) TT is constant on the G-orbits and

(b) for every affine open U C Y the inverse image ir~ l (U) is affine and 
0Y(U) ^ Ox(*- l (U))G .

Whenever such a quotient exists it is unique and will be denoted by 

TT : X -> X//G.

Let M £ Pic(X//G); then TT* M is obviously a G-line bundle on X . The following 
proposition describes the G-line bundles which arise in this way (cf. [Ma80, 
Proposition 5]).

4.2. Proposition. The homomorphism 

TT* : Pic(X//G)

is injective, and for every M e Pic(X//G) we have K*M//G ~ M in a canonical 
way. The image of n* consists of those G-line bundles L on X which satisfy 
the following condition:

(PB) For every x G X whose G-orbit is closed, the isotropy group Gx acts 
trivially on the fiber Lx of L.

((PB) stands for "pull back".)

4.3. Remark. It follows from the description of Pice of a homogeneous space 
in 3.1 that the condition (PB) is equivalent to

(PB') For every closed orbit O of G in X the restriction of L to O is a trivial 
G-line bundle.

PROOF OF PROPOSITION 4.2: Obviously we have ir*M//G ~ M; in particular, 
TT* is injective. It is also clear that the condition (PB) holds for every G-line 
bundle L in the image of ?r*.

Conversely, let L G Picc(X) and assume that L satisfies the condition 
(PB). We will show that for an affine variety X the bundle L is a pull-back 
of a line bundle on X//G. Then the general case follows immediately from the 
properties of TT and the injectivity of TT*.

To simplify notations, let A := O(X) and denote by P the yl-module 
of global section of L and by P(x) := P/mxP the fiber of L , where mx is the 
maximal ideal of x   X . Clearly, P is a projective G-A-module of finite type.

We first show that PG generates the A-module P. Let x G X be a 
point whose orbit Gx is closed, and denote by / = I(x) the ideal of Gx. By 
assumption, we have P/IP ~ A/I. Consider the commutative diagram
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p —
u

pG __

» P/IP ~

U» (P/IP}G ~
A/I -

(A/nG
-» P(x)

which consists of surjective homomorphisms (since G is reductive); it is obtained 
by factorizing the canonical homomorphism £ : P — » P(x). It follows that 
e(PG ) = /»(*), i.e.,

P = Q + mx P
where Q : = APG . Hence Pmx = Qmx by Nakayama's Lemma. On the other 
hand, the support 5 of the ^1-module P/Q is a G-stable closed subset of X . 
But we have just seen that S does not contain any closed orbit. Hence 5 is 
empty and therefore P =• Q as required.

Next we observe that multiplication with elements of A induces a 
surjective G-equivariant homomorphism

/  fc PG -> IP-

Since G is reductive this implies that (IP)G = IGPG = m^x)P° for every x 6 
X with a closed orbit. It follows that PG /m^x)PG is isomorphic to (P//P) G . 
But (P/IP)G ~ k by assumption, and so PG is a projective A G-module of rank 
1. Now it is easy to see that A ®^G PG —* P, and the claim follows. D

4.4. Remark. The above proposition holds for G-vector bundles (with the 
same proof, see [Kr89b, §3]).

4.5. Remark. We denote by 5i,52 ,...,5r C X//G the closed (connected) 
Luna strata ([Lu73]; see [Kr89a, §7]). We claim that condition (PB) is equivalent 
to

(PB") For i = 1,2, . . . , r there exists Xi 6 X such that the orbit Gxi is closed, 
n(xi) € Si and such that the isotropy group GZi acts trivially on the 
fiber L x . .

In order to prove this assertion, we denote by U the image in X//G of the set 
of all elements x 6 X such that Gx is closed and the isotropy group G x acts 
trivially on Lx ; condition (PB) is equivalent to U = X//G. It follows from the 
proof of Proposition 4.2 that U is open in X//G. This implies that U meets 
every stratum of the Luna stratification. Therefore, it remains to show that U 
contains the whole stratum whenever it contains one point of it. Hence, we are 
reduced to the case where X//G is one stratum and every orbit in X is closed. 
Choose a point x 6 X and denote by Y the fixed point set of Gx in X . Then 
the restriction of L to Y is a (connected) "algebraic family" of representations 
of the reductive group Gz , and, if one member is trivial, then all others are 
trivial, too (see [Kr89b, 2.1]). Since ir(Y) = X//G and U ^ 0 the claim follows.
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§ 5 Resume and Applications

5.1. Collecting our results from the previous paragraphs we obtain the following 
proposition:

Proposition. Let G be a reductive algebraic group and X an irreducible G- 
variety which admits a quotient IT : X —»  X//G. Then we have the following 
commutative diagram with an exact line and exact columns:

1

I
E(X//G) 

E(X}G 1

1 I
X(G) PicX//G

I I
1 -> Hj^G.CXJm  » Pico*  * PicX

I !
In the product Hzec^^**) the index set C C A" is a set of representatives 
of the closed orbits in JC, and the map 6 is obtained by associating to a line 
bundle L the characters of the isotropy groups Gx on the fibers Lx , x E C . 
More precisely, by Remark 4.5, one can take for C the finite set of points z; of 
condition (PB").

5.2. Example. Let M be a connected linear algebraic group and G C M a 
closed subgroup. We assume that G is reductive (although the following is true 
in general). We know that E(M] ~ X(M) (Proposition 1.2) and that the action 
of M (and hence also of G) on E(M) is trivial (Proposition 1.3ii). From the 
diagram of Proposition 5.1 we obtain the following exact sequence (cf. [Po74])

1 -> E(M/G) — > X(M) —> X(G) — *
  > Pic(M/G)   > Pic(M)   > Pic(G)

where the last map is the restriction from M to G (cf. Lemma 2.2). In particular, 
if PicM = 0 then Pic(M/G) cs .V(G)/ Im(#(Af)).

PROOF OF EXACTNESS AT Pic(M): Let L e Pic(M) such that L \Q is trivial. 
Recall that L* := L \ {zero section} has the structure of a linear algebraic 
group such that the projection p : L* — + G is a group homomorphism with 
central kernel, isomorphic to k * ( see [LP, Lemma 4.3]). Our assumption implies 
that the group p-1 (G) C L * is isomorphic to Gxfc*, i.e., G can be considered as
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a subgroup of L * . It follows that L admits a G-linearization. But clearly, every 
G-linearizable bundle on M is a pullback of a line bundle on M/G ( Proposition 
4.2). D

5.3. Corollary. Assume that O(X}* = k* and that X° ^ 0. Then, in the 
following diagram

1

PicXffG

X(G)

I

PicG X

ec

P'lcX

the row and the column are both exact, and the two compositions 8oa and fto-y 
are injective. In particular, if PicX = 0, then Pic(X//G) = 0 and X(G) —* 
PicG X.

(It clearly suffices to assume that the isotropy groups Gx generate G .)

PROOF: In view of the proposition it remains to prove the assertions concerning 
the compositions 8 ' := 80 a and ft' : = fto~f. But 8 ' is the product of the restric 
tions of the characters to the subgroups Gx , and the claim follows since there 
are fixed points by assumption. Now the injectivity of ft' follows immediately.

D

5.4. Example. For every G-action on an affine space k n with a fixed point 
(e.g., for a representation of G ) we have P\c(k n //G) = 0 and PicG (fc n ) ^ X(G).
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