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Introduction
In this article we present a fundamental result due to SUMIHIRO. It states that 
every normal G-variety A", where G is a connected linear algebraic group, is 
locally isomorphic to a quasi-projective G-variety, i.e., to a G-stable subvariety 
of the projective space P" with a linear G-action (Theorem 1.1). The central 
tools for the proof are (7-linearization of line bundles (§2) and some properties 
of the Picard group of a linear algebraic group (§4).

Along the proof, we also need some results about invertible functions 
on algebraic varieties and groups, which are due to ROSENLICHT. They are 
given in our second article "The Picard group of a G-variety" in this volume; 
it will be quoted by [Pic].

We work over a field of characteristic zero. Nevertheless, the main 
results are valid in positive characteristic as well, and our proofs seem to work 
in the general situation, too. We leave it to the reader to verify the details.
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§ 1 The Theorem of S UMIHIRO
We fix an algebraically closed base field k of characteristic zero. Let G be a 
connected linear algebraic group and X a normal G-variety. We plan to give a 
proof of the following fundamental result due to SUMIHIRO [Su74,Su75].

1.1. Theorem. Let Y C X be an orbit in X. There is a finite dimensional 
rational representation G — + GL(V) and a G-stable open neighborhood U of Y 
in X which is G - equivariantly isomorphic to a G-stable locally closed subvariety 
of the projective space P (V).

(As usual, a representation p : G — » GL(V) is called rational if p is a morphism 
of algebraic groups.)

Remark. The plane cubic with an ordinary double point admits a fc*-action 
with two orbits: the singular point as a fixed point and its complement which 
is isomorphic to k *. This example shows that the normality assumption in the 
theorem is necessary. In fact, for every representation V of k * the closure of an 
non-trivial orbit in P(V) always contains two fixed points (cf. [LV83, 1.6] or 
[Od78]).

1.2. Outline of Proof. Let UQ C X be an affine open subset with U(>nY ^ 0 . 
There is a line bundle L on X and a finite dimensional subspace N of the space 
H (-Y, L) of sections of L such that the corresponding rational map

JN :X--> P (JV V )

which sends x to the kernel of the map ex : N — > L x , & •  >• v(z), induces a 
(biregular) isomorphism of UQ onto a locally closed subvariety of P(JV V ). (AT V 
denotes the dual space of AT.) In fact, consider the divisor D :— X \ UQ and 
the invertible sheaf O(mD) of rational functions with poles of order at most 
m on D . If /o := l,/i,...,/n is a system of generators for the subalgebra 
k[Uo] C k(X) and N : = {/o,/i,       ,/n) * ne linear span of the /,-'s, we have 
TV C H (X,O(mD)) for all m > m0 , and the claim follows.

The main step in the proof will be to show that for suitable m > 
the sheaf O(mD) is G -linearizable ( Proposition 2.4). Then the linear action of 
G on H (Jf, O(mD)) is locally finite and rational (Lemma 2.5). Replacing N 
by the finite dimensional G-stable subspace W C H (X, O(mD}} generated by 
N we obtain a G-equivariant rational map

which induces an isomorphism of U := GUo with a G-stable locally closed 
subvariety of P (WV ).

1.3. In the next two paragraphs we give the details needed in the proof above. 
In paragraph 4 we offer a different proof based on techniques developed in 
[LV83].
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§ 2 G- Linearization of Line Bundles

2.1. We first recall some results concerning G-linearization of line bundles (cf. 
[MF82, Chap. I, §3]). As above, G is a linear algebraic group and X a G- 
variety. We denote by y> : G x X — * X the G-action and by px '• G x X — * X 
the projection. Let TT : L — >• X be a line bundle on X . We do not distinguish 
between the line bundle L and its sheaf of sections.

Definition. A G -linearization of L is a G-action

on L such that (a) TT : L — > X is G-equivariant and (b) the action is linear on 
the fibers, i.e., for every g 6 G and x 6 X the map $r : Lx — * LjX is linear.

Example. Let H be a closed subgroup of G. We denote by TT : G   >  G/-H" 
the projection and by X(H) the character group of #. For every character 
X € X(H} we define a line bundle Ex on G/# in the following way: It is the 
quotient of G x k by the action of H given by

h(g,x) := (gh-^xW-x), (h E H,g € G,x G *).

(Of course one has to show that this quotient exists.) This defines a homomor- 
phism

£ : X(H) — > Pic(G/#) : x ^ -Ex -

The image of this map is the subgroup consisting of the G-linearizable line 
bundles on G/H. In fact, by construction, Ex is equipped with a G-action, 
which is linear in the fibres. On the other hand, given a G-linearized line bundle 
L on G/H, the group H acts on the fibre LH ~ k over H = eH € G/H by 
a character x 5 and the canonical map G x L H — »  L , (g, 1) i  > g l induces an 
G-isomorphism Ex ~ L. In particular, every G-linearizable line bundle on G is 
trivial.

2.2. It is clear that for any G-linearization we obtain a commutative diagram 

GxL -^ L
idx»r * (1)

Gx* -£* X 

which is a pull-back diagram, i.e., it induces an isomorphism

of line bundles on G x X . In fact, the commutativity of the diagram is equivalent 
to the G-equivariance of TT : L — > X , and the induced morphism p*x(L} —* ^(L) 
is a bijective homomorphism of line bundles, since the action is linear on the 
fibers. In addition, the restriction of $ to { e} x L is the identity. We claim that 
the converse is true:
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Lemma. Let 3>:Gx.L—*Lbea morphism. Assume that the diagram 

GxL -1* L
7T 

•*•
idXTT

x
is a pull-back diagram, that <£(e,z) = z for all z E L and that $ (<?, ?) maps the 
zero section of L into itself for all g G G . Then $ is a G -linearization of L.

PROOF: By assumption, the morphisms $(17, ?) : Lx — > Lgx are all bijective 
and send 0 to 0; hence they are linear isomorphisms. It follows that there is an 
invertible function / : G x G x L — > k * such that

(The existence of such a map / is clear; we leave it to the reader to check 
that / is regular.) By a result of RoSENLICHT's (see [Pic, Proposition 1.1]), the 
function / is of the form

f(g, h, z) = r(g)s(h)t(z) (g,h£G,z£ L)

with invertible regular functions r, s on G and t on L . S ince $(e, z ) = z for 
every z 6 L we obtain

r(e)s(h)t(z) = 1 ( h€G,z£L), 

and similarly

r(g}s(e)t(z) = I (g£ G,zeL). 

Hence

D

= (r(g)S (e)t(z))(r(e)S (h)t(z)) = 
for every g, /i 6 G, 2   L, and the claim follows.

2.3. Lemma. The line bundle L is G -linearizable if and only if the two bundles 
f*(L) and p*x(L) on G x X are isomorphic.

PROOF: We have already seen that a G- linearization of L induces an isomor 
phism p*x(L) — » <^*(L). Conversely, such an isomorphism gives rise to a pull- 
back diagram

GxL
i Mr

X

with the property that every $(<?, ?) maps the zero section of L into itself. The 
restriction of $ to { e} x L is an automorphism of the line bundle L, hence given
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by a regular function A : X — »  &*, defined by A(?r(z))   z — $(e, z) (z G L). 
Replacing $ by A -1 $ we obtain a pull-back diagram satisfying the assumptions 
of the previous Lemma 2.2, and so L is G-linearizable. D

In the proof of the next proposition we shall need two results from 
paragraph 4.

2.4. Proposition. Let L be a line bundle on a normal G-variety X. There is 
a number n > 0 s uch that L®n is G-linearizable.

PROOF: As before we denote by <p : G x X — »  X the G-action on X and by px, 
pa the two projections G x X — > X and G x X — * G. It follows from Lemma 
4.2 that

with a line bundle M on G and with

(Here we use the normality of X!) Since Pic G is finite (Proposition 4.5) we 
obtain

for a suitable n > 0, and the claim follows from Lemma 2.3. n

Remark. We have seen in the proof above that the number n in the proposition 
can be chosen to be the order of Pic G . In particular, if G is factorial then every 
line bundle on X is G-linearizable.

2.5. End of proof. To finish the proof along the lines indicated in 1.2 we need 
the following result about the action of G on the space H (X, L) of sections of 
a G-linearized line bundle L .

Lemma. Let L be a G-linearized line bundle on X. Then the action of G on 
) given by

•a(x) := g(a(g- l x}} 

for g € G , a € H (X, L), x 6 X , is locally finite and rational.

(A linear action of G on a vector space W is called locally finite and rational if 
every w € W is contained in a finite dimensional G-stable subspace V such that 
the corresponding homomorphism G   *  GL(V) is a rational representation of 
G.)

PROOF: We first remark that there is a canonical isomorphism 

k(G\ ® H (JC, L ) ^ H (G x X ,p*x (L))
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(see [Ha77, Chap. Ill, Proposition 9.3]), which associates to f <g> T the section 
(gr, x) i  > (gr, /(y)-r(x)). The G-linearization $ : G x L   + L of L induces a linear 
map

$* : H (JT, L) -^ H (G x X,p^(I)) ~ Jb[G]   H (X, L) 

which sends the section cr to the map

or : 6? x X   * L, («7, x) ~ »~ V(x)

(This follows immediately from the pull-back diagram (1) in 2.2.) If we write 
$*(<r) in the form

at € H(X, L),

we see that ff <r = £) fi(g~ l )°'i, and the claim follows easily. O 

As a consequence of the previous results we obtain the following corollary:

2.6. Corollary. Let X be a quasi-projective normal G-variety. There is a finite 
dimensional rational representation G — » GL(V) and a G-equivariant isomor 
phism of X with a locally closed G-stable subvariety of the projective space 
P(V).

PROOF: By assumption, X is a locally closed subvariety of some projective 
space P(M), and the inclusion X "  > P(M) is of the form 7^ as in 1.2, where 
L is the line bundle associated to the invertible sheaf O(l)\x and N — Mv C 
H (.X", L). By Proposition 2.4 the line bundle L m is G-linearizable for a suit 
able 77i > 0, and we proceed as above to obtain a G-equivariant inclusion of X 
into a projective space P(V) with a linear G-action. Q

§ 3 Another Proof of S UMIHIRO'S Theorem

We give a second proof of Theorem 1.1 which is based on techniques developed 
by LUNA and VUST in [LV83, §8].

3.1. As before, let G be a connected linear algebraic group and X a normal 
G-variety. We assume that k [G] is factorial. This is no restriction since ev 
ery algebraic group G has a finite covering G  » G such that fc[G] factorial 
(Proposition 4.6).

We consider the following two actions of G on G x X :

• A left action defined by t -(s,x) := (<s,z),

  A right action defined by (s,x)-t := (3i,< -1 -x),

where s ,t G G, x £ X . Clearly, these two actions commute. We denote by 
k(G x X ) G the field of those rational functions on G x X which are invariant
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under the right action of G . The G-action <p : G x X — ̂ X on X is equivariant 
with respect to the left action of G, and <p* induces an isomorphism k(X) —* 
k(G x X )G .

3.2. Let OX,Y C k(X) denote the local ring of Y C X and mx,y its maximal 
ideal. We plan to show that there exist a finite dimensional subspace M of 
k[G] <8> k(X) which is stable under the left action of G, and an element h €i M, 
h ^ 0, satisfying the following properties:

(i) \M is contained in <f*(Ox,y}', in particular ^M C k(G x X } G ' . 
(ii) OX,Y is the localization of fc[^M] (considered as a subalgebra of k ( X)) 

at the ideal fcM n

We claim that this implies Theorem 1.1. In fact, the inclusion of M into the 
field k(G x X ) corresponds to a rational map

fi:GxX — -> P (MV )

which is equivariant with respect to the left action of G on G x X and the 
linear action of G on P(MV ). We denote by X 1 the closure of the image of fj. 
and by X 'h the intersection of X ' with the affine open subset

P(MV ) A := { x 6 P(MV ) | h(x) ^ 0 } C P(MV ).

X'h is affine and the algebra k[X'h ] coincides with the subalgebra &[^M] of 
k(G x -X"). According to (i) the map fj. factors through 9?, inducing a rational 
map (again denoted by //)

H : X — -> X '

which is regular in a neighbourhood of Y . Now it follows from (ii) that fj. 
induces an isomorphism of an open subset U containing Y with a locally closed 
subvariety of P(MV ). D

3.3. Construction of M . To simplify notations we set A : = k [G] <8> k(X); this 
is a factorial ring (see 3.5) whose field of fractions is k(Gx X). Let / 6 k(X). We 
write y*(/) = f where a, 6 6 A are relatively prime. Since <£>*(/) G k(G x X ) G ' , 
we get

a* = 7(<)a and 6' = 7(t)6 ( t € G)

where a*(s, x ) := a (5<~ 1 , <x) is the translate of a with respect to the right action 
of G and 7 : G — » fc(-X")* is a cocycle with values in fc(Jf )* by Lemma 3.6.

We choose a finite dimensional subspace JVj of OX,Y containing the 
constants such that OX,Y is the localization of k [N\] at k [Ni]r\mx,Y- It follows 
from what we have seen above that there are a finite dimensional subspace N 
of A, an element h € ./V and a cocycle 7 : G — > &(X)* such that (p*(Ni) — j^N 
and a* = 7(^)0 for every a   -Af and f 6 G. Of course, we can assume that the 
elements of N do not have a common divisor in A .
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Claim. For every a 6 N and t € G we have — € f*(Ox t Y)-
it

(The function *a is the translate of a with respect to the left action of the group 
G: '0(5, x) :=a(t- l s,x).)

It is clear now that the G-submodule M of A generated by N satisfies 
the conditions (i) and (ii) of 3.2. It remains to prove the claim above.

3.4. Proof of the Claim. Since the right and the left action of G commute 
and, in addition, the left action is trivial on k(X), we obtain (*a) a = 7(s)( t a) 

(M   G, a 6 AT). Therefore we have '•£ 6 <f>*(k(X)) = k (G x X } G '.
Up to now we have not used the normality of X . This assumption 

implies that OX,Y is a Krull-ring whose essential valuations vz are those as 
sociated to the local rings Ox,z where Z i s an irreducible closed subvariety of 
codimension 1 containing Y .

Let ZQ be such a subvariety. Then (^~ 1 (Z0 ) is an irreducible subvariety 
of G x X of codimension 1 and the corresponding valuation v<p-i(z0 ) °f k (G x X ) 
extends vZo . ( Recall that k(X) = k(G x X }G C k(G x X ).) If ZQ is G-invariant 
then ^-i(Zo) is ^-invariant, too, i.e., ^-'(ZojC/) = *V»(^o)(/)- If Zo is not 
G-invariant then f^,-i(z0 ) is improper on the subfield k(X) of k (G x X ) and is 
positive on k [G]. It follows that vv-i(z0 ) is an essential valuation of the factorial 
A;(^)-algebra (hence Krull- algebra) A = k[G] ® k(X).

Now let i/z be any essential valuation of <f>*(Ox,Y], f £ N and t G G . 
We have to show that vz(~h} > 0. If Z is (7-stable we find

'/ V

If Z is not G-stable we have v<f -\(z)(f'} > 0 f r all f £ N because N C A and 
J'v,-i(2') is essential for this algebra. Also,

By assumption, the elements of N do not have a common divisor and so 
= 0 . Hence

since */ £ A This finishes the proof of the theorem. n

3.5. In 3.3 we have used the result that for an algebraic group G and a field 
extension K/k the A"-algebra k [G]®K is factorial in case k [G] is factorial. This
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follows from the lemma below and the fact that G is a rational variety (see 4.1).

Lemma. Let Y be an affine rational variety. If k[Y] is factorial then for every 
field extension K/k the algebra k[Y] ®* K is also factorial.

PROOF: Since Y is rational there is an /   k [Y] such that the localisation 
fc[K]/ is isomorphic to fc[zi,Z2, . . . ,Zn]fc f r a suitable h (E fc[zi,Z2,. . . ,zn], 
n = dim Y . Clearly, K [x\ , Z2 ,       , % n\h is factorial, and so AT[y]/ i is factorial, 
too. (We put K[Y] := k[Y] (g)* K .) Consider a primary decomposition / = 
Since

K\Y]/(fi 0 I )K(Y] ~ (k(Y]lfik\Y\) ®k K

is an integral domain ( k is algebraically closed), the ideal of K \Y] generated by 
/,  0 1 is prime. This implies that K [Y] is factorial ([BAC7, §3, n 4, proposition 
3]). O

3.6. Finally we prove the second result used in 3.3.

Lemma. Every cocycle of G with values in the group A* of units of A = 
k[G] 0 k(X) takes its values in k(X)*.

PROOF: Let U be an open subvariety of X . By results of ROSENLICHT ([Pic, 
1.1, 1.2]) the group ( k[G\®k[U\)* is generated by k [G\* and k [U}*, and k [G\* = 
k* x X(G) where X (G} denotes the character group of G . From this we obtain

/ V
A* = |J k [G]®k[U]\ = \J(k[G\®k[U]y

\U open in X J UCX

= |J X(G) x k [U]* ~ X(G) x k(X)\
ucx

Now consider an element a of A * and write a in the form a = xP with x   
and p € k(X)*. One easily sees that

Let 7 be a cocycle with values in A* and decompose 7(5) in the form 7(5) = X aPs 
with X a £ X(G) and p3 6 k(X)*. Then the cocycle condition j(st) = j(s) t j(£) 
becomes

XatPst = (XsPs

In particular one sees that the map s H- >  X a is a group homomorphism G — > 
X(G}. But every such homomorphism is trivial: We can clearly assume that G 
is commutative which implies that G is divisible (being a product of additive 
and multiplicative groups), whereas X (G} is a finitely generated abelian group. 
Hence we obtain 7(6) C k(X)*. D
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§ 4 Picard Group of a Linear Algebraic Group

Let G be a connected linear algebraic group. In this paragraph we explain 
some classical results about the Picard group P icG (cf. [FI74], [Po74], [Iv76]). 
In particular, we give the proofs of several results which have been used in the 
previous paragraphs.

4.1. We start by recalling some well-known results about the structure of the 
underlying variety of a linear algebraic group G. If G is unipotent then G 
is isomorphic   as a variety   to k n : This is clear for dimG = 1 (see [Hu75, 
Theorem 20.5] or [Kr85, III. 1.1 Beispiel 2]); the general case follows by induction 
using the fact that every principal fc+ -bundle over an affine variety is trivial (cf. 
[Gr58, proposition 1]). If G is connected and solvable, then G is isomorphic   
again as a variety   to k * p x k9 , because G is a semidirect product of a torus 
and a unipotent group ([Hu75, Theorem 19.3b]).

Now let G be a connected reductive group. Then G contains an affine 
open subset U , the b ig cell, which is isomorphic to k * p x k q ( [Hu75, Proposi 
tion 28.5], Bruhat-decomposition). In general, a connected algebraic group G is 
isomorphic   as a variety   to (G/GU ) x Gu where Gu is the unipotent radical 
of G ([Gr58, loc. cit.]), hence also contains an affine open subvariety isomorphic 
to k * p x k9 .

4.2. Lemma. Let X be a normal algebraic variety. For every line bundle L on 
G x X we have

PROOF: (a) We first assume that X is smooth. Then the Picard group Pic(G x 
X) can be identified with the group C1(G x X ) of divisor classes on G x X . 
By [Ha77, Chap. II, Proposition 6.6] the claim is true if we replace G by the 
variety k or k * or more generally by k * p x kq . We know that G contains an 
open subset U isomorphic to k * p x k q ( 4.1). Hence, the line bundle

-i

is trivial on U x X. Therefore, the corresponding divisor class can be represented 
by a divisor D C (G \ U ) x X. It follows that D = p^ (D) with a divisor ~D C G 
and so

M~pG (M|Gx{lo} ). 

Since M| GX { XO } is trivial, M i s trivial, too.

(b) For a normal variety X the open subset Xreg of regular points of X has 
a complement of codimension at least 2, and every function defined on XTeg 
extends to a regular function on X . We have just seen in (a) that M|xre is 
trivial. Hence M is trivial, too. D
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4.3. Lemma. Lei L € Pic G and denote by L* the complement of the zero 
section in L. Then L* has the structure of a linear algebraic group such that 
the following holds:

(a) The projection p : L —+ G induces a group homomorphism L* —* G 
with central kernel isomorphic to k* .

(b) The line bundle L is L*-linearizable.

PROOF: We denote by m : G x G — * G the multiplication in G and by pi,pi : 
G x G — » G the two projections. By 4.2 the two line bundles m*(£) and 
p*(L) ® P-i(L) a*16 isomorphic. Choosing such an isomorphism 0 we obtain a 
"bilinear" morphism fji : L x L — » L via the following commutative diagram:

LxL — > pl(L)®p*2 (L) — > m*(L) — + L

["*" I 1 1P 
GxG = GxG = GxG -^ G

We want to modify ij> in such a way that /i defines a product on L*. First 
we fix an identification of k with the fiber Le of L over the unit element e of 
G] we denote by 1   Le the multiplicative unit of Le = k. Now consider the 
composition:

L — * L x{l} -£* L

I I I
G — » Gx{e}   » G

It is an isomorphism of L over G, inducing the identity on G, hence given by a 
invert ible function r € k[G]*:

l*(u, 1 ) = r(p(u))u, («   L). 

Similarly, we see that there is a 5   k [G]* such that

Replacing t/> by 0o(r~ 1  s~1 ) the element I € L becomes a left and right unit 
for \i. We claim that p is associative. In fact, /*(id x/z) and n(y, x id) are two 
"trilinear" morphisms L x L x L —— > L over the same map G x G x G — »  G. 
Hence there is an t € k [G x G x G]* such that

(it, U, to 6 £). There are invertible functions t ± E £ [G]*, i = 1 , 2, 3, such that

(see [Pic, 1.1]). Since £(e,e,e) = 1 we may assume that i,-(e) = 1 ( i = 1,2,3). 
It follows that

1 =%,e,e) = <i(0)<2 (e)*3(e) = t i(g) for all y   G,
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because 1   £ is a unit for fjt. Similarly, we get ti = £3 = 1, i.e., n is associative.
Since L* is the subset of "invertible" elements of L with respect to

/^, the first assertion (a) follows. Furthermore, the restriction of // to L * x L
defines a .^-linearization of L, hence (b). D

4.4. Lemma. Let L €. PicG. There is a finite covering TT : G ' —> G of algebraic 
groups such that L is G'-linearizable and K*(L) = 0 .

PROOF: Consider the exact sequence 

1  » T  > L* -*-» G —* 1

where L * is as in Lemma 4.3, and T := kerp is isomorphic to k *. Let p : L* —> 
GL(V) be a finite dimensional rational representation such that p(T) ^ {id}. 
Replacing V by a suitable submodule on which T acts by scalar multiplication, 
we may assume that p(T] £ SL(V). Denote by G 1 the identity component of 
p~ l (SL(V)). Then the restriction TT of p to G ' is a finite covering of G . Since 
L is L*-linearizable (4.3b) it is also G'-linearizable. Finally, the line bundle 
L' : = K *(L] on G ' is G'-linearizable, hence trivial (see Example 2.1). D

4.5. Proposition. P ic G is a finite group.

PROOF: Let L e PicG and TT : G 1 —* G as in the previous Lemma 4.4. The 
(finite) kernel H of TT acts on the fibers of £, hence acts trivially on L®d where 
d is the order of H. As a consequence, L® d is G-linearizable, hence trivial 
(Example 2.1). This shows that PicG is a torsion group.

On the other hand, Pic G is finitely generated. In fact, G contains 
an affine open subset U whose coordinate ring is factorial (see 4.1). It follows 
that the divisor class group Cl G is generated by the irreducible components of 
G ^ U ( [Ha77, Chap. II, 6.5]). This implies the claim because PicG coincides 
with Cl G. D

4.6. Proposition. There exists a finite covering G —> G of algebraic groups 
such that P ic G = 0.

PROOF: By Lemma 4.4 and Proposition 4.5 it suffices to show that for every 
finite covering a : G\ —»  G the induced map a * : P ic G  > Pic GI is surjective. 

Let L I € Pic GI , and let TT : G'  > GI be a finite covering such that L \ 
is G'-linearizable as in Lemma 4.4. Then GI = G 1 /Hi where HI is the kernel 
of TT, and L I = EXl with a suitable character xi of #1 (Example 2.1). Let 
H : = ker(a o ?r) D HI. S ince H is (finite and) commutative there is a character 
X of H extending X i • Now it follows that LI is the pull back of the line bundle 
L : = Ex on G. D
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