DEGREE BOUNDS FOR SEPARATING INVARIANTS

MARTIN KOHLS AND HANSPETER KRAFT

Abstract. If \(V \) is a representation of a linear algebraic group \(G \), a set \(S \) of \(G \)-invariant regular functions on \(V \) is called separating if the following holds: If two elements \(v, v' \in V \) can be separated by an invariant function, then there is an \(f \in S \) such that \(f(v) \neq f(v') \). It is known that there always exist finite separating sets. Moreover, if the group \(G \) is finite, then the invariant functions of degree \(\leq |G| \) form a separating set. We show that for a non-finite linear algebraic group \(G \) such an upper bound for the degrees of a separating set does not exist.

If \(G \) is finite, we define \(\beta_{\text{sep}}(G) \) to be the minimal number \(d \) such that for every \(G \)-module \(V \) there is a separating set of degree \(\leq d \). We show that for a subgroup \(H \subset G \) we have \(\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq [G:H] \cdot \beta_{\text{sep}}(H) \), and that \(\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \cdot \beta_{\text{sep}}(H) \) in case \(H \) is normal. Moreover, we calculate \(\beta_{\text{sep}}(G) \) for some specific finite groups.

1. Introduction

Let \(K \) be an algebraically closed field of arbitrary characteristic. Let \(G \) be a linear algebraic group and \(X \) a \(G \)-variety, i.e. an affine variety equipped with a (regular) action of \(G \), everything defined over \(K \). We denote by \(\mathcal{O}(X) \) the coordinate ring of \(X \) and by \(\mathcal{O}(X)^G \) the subring of \(G \)-invariant regular functions. The following definition is due to Derksen and Kemper [4, Definition 2.3.8].

Definition 1. Let \(X \) be a \(G \)-variety. A subset \(S \subset \mathcal{O}(X)^G \) of the invariant ring of \(X \) is called separating (or \(G \)-separating) if the following holds:

For any pair \(x, x' \in X \), if \(f(x) \neq f(x') \) for some \(f \in \mathcal{O}(X)^G \) then there is an \(h \in S \) such that \(h(x) \neq h(x') \).

It is known and easy to see that there always exists a finite separating set (see [4, Theorem 2.3.15]).

If \(V \) is a \(G \)-module, i.e. a finite dimensional \(K \)-vector space with a regular linear action of \(G \), we would like to know a priori bounds for the degrees of the elements in a separating set. We denote by \(\mathcal{O}(V)_d \subset \mathcal{O}(V) \) the homogeneous functions of degree \(d \) (and the zero function), and put \(\mathcal{O}(V)_{\leq d} := \bigoplus_{i=0}^{d} \mathcal{O}(V)_i \).

Definition 2. For a \(G \)-module \(V \) define

\[\beta_{\text{sep}}(G,V) := \min \{ d \mid \mathcal{O}(V)_{\leq d} \text{ is } G\text{-separating} \} \in \mathbb{N}, \]

and set

\[\beta_{\text{sep}}(G) := \sup \{ \beta_{\text{sep}}(G,V) \mid V \text{ a } G\text{-module} \} \in \mathbb{N} \cup \{ \infty \}. \]

The main results of this note are the following.

Received by the editors July 13, 2010.
The group G is finite if and only if $\beta_{\text{sep}}(G)$ is finite.

In order to prove this we will show that $\beta_{\text{sep}}(K^+) = \infty$, that $\beta_{\text{sep}}(K^*) = \infty$, that $\beta_{\text{sep}}(G) = \infty$ for every semisimple group G, and that $\beta_{\text{sep}}(G^0) \leq \beta_{\text{sep}}(G)$ where G^0 denotes the identity component of G (see Theorem 1 in section 3).

Theorem B. Let G be a finite group and $H \subset G$ a subgroup. Then

$$\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq [G : H] \beta_{\text{sep}}(H), \text{ and so } \beta_{\text{sep}}(G) \leq |G|.$$

Moreover, if $H \subset G$ is normal, then

$$\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H).$$

This will be done in section 4 where we formulate and prove a more precise statement (Theorem 2).

Finally, we have the following explicit results for finite groups.

Theorem C.

(a) Let $\dim K = 2$. Then $\beta_{\text{sep}}(S_3) = 4$.

(b) Let $\dim K = p > 0$ and let G be a finite p-group. Then $\beta_{\text{sep}}(G) = |G|$.

(c) Let G be a finite cyclic group. Then $\beta_{\text{sep}}(G) = |G|$.

(d) Assume $\dim K = p$ is odd, and $r \geq 1$. Then $\beta_{\text{sep}}(D_{2p^r}) = 2p^r$.

For a reductive group G one knows that the condition $f(x) \neq f(x')$ for some invariant f (in Definition 1) is equivalent to the condition $Gx \cap Gx' = \emptyset$, see [13, Corollary 3.5.2]. This gives rise to the following definition.

Definition 3. Let X be a G-variety. A G-invariant morphism $\varphi : X \to Y$ where Y is an affine variety is called separating (or G-separating) if the following condition holds: For any pair $x, x' \in X$ such that $Gx \cap Gx' = \emptyset$ we have $\varphi(x) \neq \varphi(x')$.

Remark 1. If $\varphi : X \to Y$ is G-separating and $X' \subset X$ a closed G-stable subvariety, then the induced morphism $\varphi|_{X'} : X' \to Y$ is also G-separating.

Remark 2. Choose a closed embedding $Y \subset K^m$ and denote by $\varphi_1, \ldots, \varphi_m \in \mathcal{O}(X)$ the coordinate functions of $\varphi : X \to Y \subset K^m$. If φ is separating, then $\{\varphi_1, \ldots, \varphi_m\}$ is a separating set. The converse holds if G is reductive, but not in general, as shown by the standard linear action of K^+ on K^2 given by $s(x, y) = (x + sy, y)$ which does not admit a separating morphism, but has $\{y\}$ as a separating set.

2. Some useful results

We want to recall some facts about the β_{sep}-values, and compare them with results for the classical β-values for generating invariants introduced by Schmid [15]: $\beta(G)$ is the minimal $d \in \mathbb{N}$ such that, for every G-module V, the invariant ring $\mathcal{O}(V)^G$ is generated by the invariants of degree $\leq d$.

By Derksen and Kemper [4, Corollary 3.9.14], we have $\beta_{\text{sep}}(G) \leq |G|$. This is in perfect analogy to the Noether bound which says that $\beta(G) \leq |G|$ in the non-modular case (i.e. if $\dim K \nmid |G|$), see [8, 9, 15]. Of course we have $\beta_{\text{sep}}(G) \leq \beta(G)$, so every upper bound for $\beta(G)$ gives one for $\beta_{\text{sep}}(G)$.
In characteristic zero and in the non-modular case there are the bounds by Schmid [15] and by Domokos, Hegedüs, and Sezer [6, 16] which improve the Noether bound. In particular, \(\beta(G) \leq \frac{3}{2}\beta \) for non-modular non-cyclic groups \(G \), by [16].

For a linear algebraic group \(G \) it is shown by Bryant, Derksen and Kemper [2, 5] that \(\beta(G) < \infty \) if and only if \(G \) is finite and \(p \nmid |G| \) which is the analogon to our Theorem A. For further results on degree bounds, we recommend the overview article of Wehlau [18].

The following results will be useful in the sequel.

Proposition 1. Let \(H \subset G \) be a closed subgroup, \(X \) an affine \(G \)-variety and \(Z \) an affine \(H \)-variety. Let \(\iota : Z \rightarrow X \) be an \(H \)-equivariant morphism and assume that \(\iota^* \) induces a surjection \(\mathcal{O}(X)^G \rightarrow \mathcal{O}(Z)^H \). If \(S \subset \mathcal{O}(X)^G \) is \(G \)-separating, then the image \(\iota^*(S) \subset \mathcal{O}(Z)^H \) is \(H \)-separating.

Proof. Let \(f \in \mathcal{O}(Z)^H \) and \(z_1, z_2 \in Z \) such that \(f(z_1) \neq f(z_2) \). By assumption \(f = \iota^*(\hat{f}) \) for some \(\hat{f} \in \mathcal{O}(X)^G \). Put \(x_i := \iota(z_i) \). Then \(\hat{f}(x_1) = f(x_1) = f(z_1) \neq f(z_2) = \hat{f}(x_2) \). Thus we can find an \(h \in S \) such that \(h(x_1) \neq h(x_2) \). It follows that \(\hat{h} := \iota^*(h) \in \iota^*(S) \) and \(\hat{h}(z_1) = h(x_1) \neq h(x_2) = \hat{h}(z_2) \). \(\square \)

Remark 3. In general, the inverse map \((\iota^*)^{-1} \) does not take \(H \)-separating sets to \(G \)-separating sets. Take \(K^+ \subset \text{SL}_2 \) as the subgroup of upper triangular unipotent matrices, \(X = K^2 \oplus K^2 \oplus K^2 \) the sum of three copies of the standard representation of \(\text{SL}_2 \) and \(Z = K^2 \oplus K^2 \) the sum of two copies of the standard representation of \(K^+ \). Then \(\iota : Z \rightarrow X \) defined by \((v, w) \mapsto ((1, 0), v, w) \) is \(K^+ \)-equivariant and induces an isomorphism \(\mathcal{O}(X)^{\text{SL}_2} \cong \mathcal{O}(Z)^{K^+} \) (see [14]). In fact, choosing the coordinates \((x_0, x_1, y_0, y_1, z_0, z_1)\) on \(X \) and \((y_0, y_1, z_0, z_1)\) on \(Y \), we get from the classical description [3] of the invariants and covariants of copies of \(K^2 \):

\[
\mathcal{O}(X)^{\text{SL}_2(K)} = K[y_1 x_0 - y_0 x_1, z_1 x_0 - z_0 x_1, y_1 z_0 - y_0 z_1],
\]

\[
\mathcal{O}(Y)^{K^+} = K[y_1, z_1, y_1 z_0 - y_0 z_1],
\]

and the claim follows, because \(\iota^*(x_0) = 1, \iota^*(x_1) = 0 \).

Now take \(S := \{y_1, z_1, y_1 (y_1 z_0 - y_0 z_1), z_1 (y_1 z_0 - y_0 z_1)\} \subset \mathcal{O}(Z)^{K^+} \). We claim that \(S \) is a \(K^+ \)-separating set, but \((\iota^*)^{-1}(S) \subset \mathcal{O}(X)^{\text{SL}_2} \) is not \(\text{SL}_2 \)-separating. For the first claim one has to use that if \(y_1 \) and \(z_1 \) both vanish, then the third generator \(y_1 z_0 - y_0 z_1 \) of the invariant ring \(\mathcal{O}(Y)^{K^+} \) also vanishes. For the second claim we consider the elements \(v = ((0, 0), (0, 0), (0, 0)) \) and \(v' = ((0, 0), (1, 0), (0, 1)) \) of \(X \), which are separated by the invariants, but not by \((\iota^*)^{-1}(S) \).

For the following application recall that for a closed subgroup \(H \subset G \) of finite index the induced module \(\text{Ind}_H^G V \) of an \(H \)-module \(V \) is a finite dimensional \(G \)-module.

Corollary 1. Let \(H \subset G \) be a closed subgroup of finite index and let \(V \) be an \(H \)-module. Then \(\beta_{\text{sep}}(H, V) \leq \beta_{\text{sep}}(G, \text{Ind}_H^G V) \). In particular, \(\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \).

Proof. By definition, \(\text{Ind}_H^G V \) contains \(V \) as an \(H \)-submodule in a canonical way. If \(n := [G : H] \) and \(G = \bigcup_{i=1}^n g_i H \), then \(\text{Ind}_H^G V = \bigoplus_{i=1}^n g_i V \). Moreover, the inclusion \(\iota : V \hookrightarrow \text{Ind}_H^G V \) induces a surjection \(\iota^* : \mathcal{O}(\text{Ind}_H^G(V))^G \rightarrow \mathcal{O}(V)^H, f \mapsto f|_V \). In fact, for \(f \in \mathcal{O}(V)^H \), a preimage \(\hat{f} \) is given by \(\hat{f}(g_1 v_1, \ldots, g_n v_n) := \sum_{i=1}^n f(v_i), v_i \in V, \)
For any non-finite linear algebraic group G, it is easy to see that $\beta_{\text{sep}}(G,U) \leq \beta_{\text{sep}}(G,V)$. Let V be a G-module and $U \subset V$ a submodule. The restriction map $\mathcal{O}(V) \to \mathcal{O}(U)$, $f \mapsto f|_U$ takes every separating set of $\mathcal{O}(V)^G$ to a separating set of $\mathcal{O}(U)^G$. In particular, we have

$$\beta_{\text{sep}}(G,U) \leq \beta_{\text{sep}}(G,V).$$

Let us mention here that in positive characteristic the restriction map is in general not surjective when restricted to the invariants, and so a generating set is not necessarily mapped onto a generating set.

We finally remark that for finite groups there always exist G-modules V such that $\beta_{\text{sep}}(G,V) = \beta_{\text{sep}}(G)$. The same holds for the β-values in characteristic zero.

Proposition 3. Let G be a finite group and $V_{\text{reg}} = KG$ its regular representation. Then

$$\beta_{\text{sep}}(G) = \beta_{\text{sep}}(G,V_{\text{reg}}).$$

In fact, every G-module V can be embedded as a submodule into $V_{\text{reg}}^{\dim V}$. Since, by [7, Corollary 3.7], $\beta_{\text{sep}}(G,V^m) = \beta_{\text{sep}}(G,V)$ for any G-module V and every positive integer m, the claim follows from Proposition 2.

3. The case of non-finite algebraic groups

In this section we prove the following theorem which is equivalent to Theorem A from the first section.

Theorem 1. For any non-finite linear algebraic group G we have $\beta_{\text{sep}}(G) = \infty$.

We start with the additive group K^+. Denote by $V = K\mathfrak{e}_0 \oplus K\mathfrak{e}_1 \simeq K^2$ the standard 2-dimensional K^+-module: $s \cdot \mathfrak{e}_0 := e_0$, $s \cdot \mathfrak{e}_1 := se_0 + e_1$ for $s \in K^+$. If $\text{char } K = p > 0$, we can “twist” the module V with the Frobenius map $F^n: K^+ \to K^+, s \mapsto s^p$ to obtain another K^+-module which we denote by V_{F^n}.

Proposition 4. Let $K = p > 0$ and consider the K^+-module $W := V \oplus V_{F^n}$. We write $\mathcal{O}(W) = K[x_0, x_1, y_0, y_1]$. Then $\mathcal{O}(W)^{K^+} = K[x_1, y_1, x_0^n y_1 - x_1^n y_0]$. In particular, $\beta_{\text{sep}}(K^+, W) = p^n + 1$ and so $\beta_{\text{sep}}(K^+) = \infty$.

Proof. It is easy to see that $f := x_0^n y_1 - x_1^n y_0$ is K^+-invariant. Define the K^+-invariant morphism

$$\pi: W \to K^3, \quad w = (a_0, a_1, b_0, b_1) \mapsto (a_1, b_1, a_0^n b_1 - a_1^n b_0).$$

Over the affine open set $U := \{(c_1, c_2, c_3) \in K^3 \mid c_1 \neq 0\}$, the induced map $\pi^{-1}(U) \to U$ is a trivial K^+-bundle. In fact, the morphism $\rho: U \to \pi^{-1}(U)$ given by $(c_1, c_2, c_3) \mapsto (0, c_1, -c_1^{-p} c_3, c_2)$ is a section of π, inducing a K^+-equivariant isomorphism $K^+ \times U \simeq \pi^{-1}(U)$, $(s, u) \mapsto s \cdot \rho(u)$. This implies that $\mathcal{O}(W)^{K^+} = K[x_1, x_1^{-1}, y_1, f]$, hence $\mathcal{O}(W)^{K^+} = K[x_0, x_1, y_0, y_1] \cap K[x_1, x_1^{-1}, y_1, f]$, and the claim follows easily. □
If K has characteristic zero, we need a different argument. Denote by $V_n := S^n V$ the nth symmetric power of the standard K^+-module $V = K e_0 \oplus K e_1$ (see above). This module is cyclic of dimension $n + 1$, i.e. $V_n = \langle K^+ v_n \rangle$ where $v_n := e_1^n$, and for any $s \in K^+, s \neq 0$, the endomorphism $v \mapsto sv - v$ of V_n is nilpotent of rank n. In particular, $V_n^{K^+} = K v_0$ where $v_0 := e_1^n \in V_n$.

Remark 4. For $q \geq 1$ consider the qth symmetric power $S^q V_n$ of the module V_n. Then the cyclic submodule $\langle K^+ v_n^q \rangle \subset S^q V_n$ generated by v_n^q is K^+-isomorphic to V_{qn}, and $\langle K^+ v_n^q \rangle^{K^+} = K v_0^q$. One way to see this is by remarking that the modules V_n are $S\ell_2(K)$-modules in a natural way, and then to use representation theory of $S\ell_2(K)$.

Proposition 5. Let $\text{char } K = 0$. Consider the K^+-module $W = V^* \oplus V_n$ and the two vectors $w := (x_0, v_0)$ and $w' := (x_0, 0)$ of W. Then there is a K^+-invariant function $f \in \mathcal{O}(W)^{K^+}$ separating w and w', and any such f has degree $\deg f \geq n + 1$. In particular, $\beta_{\text{sep}}(K^+, W) \geq n + 1$, and so $\beta_{\text{sep}}(K^+) = \infty$.

Proof. Let U_1, U_2 be two finite dimensional vector spaces. There is a canonical isomorphism

$$
\Psi : \mathcal{O}(U_1^* \oplus U_2)(p,q) \overset{\sim}{\rightarrow} \text{Hom}(S^q U_2, S^p U_1)
$$

where $\mathcal{O}(U_1^* \oplus U_2)(p,q)$ denotes the subspace of those regular functions on $U_1^* \oplus U_2$ which are bihomogeneous of degree (p,q). If $F = \Psi(f)$, then for any $x \in U_1^*$ and $u \in U_2$ we have

$$f(x,u) = x^p(F(u^q)).$$

(Since we are in characteristic 0 we can identify $S^p(U_1^*)$ with $(S^p U_1)^*$.) Moreover, if U_1, U_2 are G-modules, then Ψ is G-equivariant and induces an isomorphism between the G-invariant bihomogeneous functions and the G-linear homomorphisms:

$$\Psi : \mathcal{O}(U_1^* \oplus U_2)(p,q)^G \overset{\sim}{\rightarrow} \text{Hom}_G(S^q U_2, S^p U_1).$$

For the K^+-module $W = V^* \oplus V_n$ we thus obtain an isomorphism

$$\Psi : \mathcal{O}(V^* \oplus V_n)^{K^+}(p,q) \overset{\sim}{\rightarrow} \text{Hom}_{K^+}(S^q V_n, S^p V).$$

Putting $p = n$ and $q = 1$ and defining $f \in \mathcal{O}(V^* \oplus V_n)^{K^+}(p,n,1)$ by $\Psi(f) = \text{Id}_{V_n}$, we get $f(w) = f(x_0, v_0) = x_0^n(v_0) = x_0^n(e_0^n) \neq 0$, and $f(w') = f(x_0, 0) = 0$. Hence w and w' can be separated by invariants.

Now let f be a K^+-invariant separating w and w' where $\deg f = d$. We can clearly assume that f is bihomogeneous, say of degree (p,q) where $p + q = d$. Because f must depend on V_n, we have $q \geq 1$. Hence $f(w') = f(x_0, 0) = 0$, and so $f(w) = f(x_0, v_0) \neq 0$. This implies for $F := \Psi(f)$ that $F(v_0^n) \neq 0$. Now it follows from Remark 4 above that F induces an injective map of $\langle K^+ v_n^q \rangle$ into $S^p V$, and so

$$p + 1 = \dim S^p V \geq \dim \langle K^+ v_n^q \rangle = qn + 1 \geq n + 1.$$

Hence $\deg f = p + q \geq n + 1$. \square

To handle the general case we use the following construction. Let G be an algebraic group and $H \subset G$ a closed subgroup. We assume that H is reductive. For an affine H-variety X we define

$$G \times^H X := (G \times X) / / H := \text{Spec}(\mathcal{O}(G \times X)^H)$$
where H acts (freely) on the product $G \times X$ by $h(g,x) := (gh^{-1}, hx)$, commuting with the action of G by left multiplication on the first factor. We denote by $[g, x]$ the image of $(g, x) \in G \times X$ in the quotient $G \times^{H} X$.

The following is well-known. It follows from general results from geometric invariant theory, see e.g. [12].

(a) The canonical morphism $G \times^{H} X \to G/H$, $[g, x] \mapsto gH$, is a fiber bundle (in the étale topology) with fiber X.

(b) If the action of H on X extends to an action of G, then $G \times^{H} X \xrightarrow{\sim} G/H \times X$ where G acts diagonally on $G/H \times X$ (i.e. the fiber bundle is trivial).

(c) The canonical morphism $\iota: X \hookrightarrow G \times^{H} X$ given by $x \mapsto [e, x]$ is an H-equivariant closed embedding.

Lemma 1. If $\varphi: G \times^{H} X \to Y$ is G-separating, then the composite morphism $\varphi \circ \iota: X \to Y$ is H-separating. Moreover, if $S \subset O(G \times^{H} X)^{G}$ is a G-separating set, then its image $\varphi^{*}(S) \subset O(X)^{H}$ is H-separating.

Proof. For $x \in X$ we have $G[e, x] = [G, \Pi_{x}]$. Therefore, if $\Pi_{x} \cap \Pi_{x'} = \emptyset$, then $G[e, x'] \cap G[e, x] = \emptyset$ and so $\varphi \circ \iota(x) = \varphi(e, x') \neq \varphi(e, x) = \varphi \circ \iota(x')$. The second claim follows from Proposition 1, because $O(G \times^{H} X)^{G} = O(G \times X)^{G \times^{H} X} = O(X)^{H}$ and so φ^{*} induces an isomorphism $O(G \times^{H} X)^{G} \xrightarrow{\sim} O(X)^{H}$. \qed

Now let V be a G-module and $X := V|_{H}$, the underlying H-module. Let H act on G by right-multiplication with the inverse. As H is reductive, the categorical quotient $G//H$ exists as an affine G-variety, and can be identified with the set of left cosets G/H (see [17, Exercise 5.5.9 (8)]). Choose a closed G-equivariant embedding $G/H \xrightarrow{\sim} Gw_{0} \hookrightarrow W$ where W is a G-module (see [4, Lemma A.1.9]). Then we get the following composition of closed embeddings where the first one is H-equivariant and the remaining are G-equivariant:

$$
\mu: V|_{H} \hookrightarrow G \times^{H} V \xrightarrow{\sim} G/H \times V \hookrightarrow W \times V.
$$

The map μ is given by $\mu(v) = (w_{0}, v)$. It follows from Lemma 1 and Remark 1 that for any G-separating morphism $\varphi: W \times V \to Y$ the composition $\varphi \circ \mu: V|_{H} \to Y$ is H-separating. In particular, if G is reductive, then for any G-separating set $S \subset O(W \times V)$ the image $\mu^{*}(S) \subset O(V)^{H}$ is H-separating. Since $\deg \mu^{*}(f) \leq \deg f$ this implies the following result.

Proposition 6. Let G be a reductive group, $H \subset G$ a closed reductive subgroup and V' an H-module. If V' is isomorphic to an H-submodule of a G-module V, then

$$
\beta_{\text{sep}}(H, V') \leq \beta_{\text{sep}}(G).
$$

Now we can prove the main result of this section,

Proof of Theorem 1. By Corollary 1 we can assume that G is connected.

(a) Let G be semisimple, $T \subset G$ a maximal torus and $B \supset T$ a Borel subgroup. If $\lambda \in X(T)$ is dominant we denote by E^{λ} the Weyl-module of G of highest weight λ, and by $D^{\lambda} \subset E^{\lambda}$ the highest weight line. Choose a one-parameter subgroup $\rho: \mathbb{K}^{*} \to T$ and define $k_{0} \in \mathbb{Z}$ by $\rho(t)u = t^{k_{0}} \cdot u$ for $u \in D^{\lambda}$. For any $n \in \mathbb{N}$ put

$$
V_{n} := (D^{\lambda})^{*} \oplus D^{n\lambda} \subset V_{n} := (E^{\lambda})^{*} \oplus E^{n\lambda}.
$$
Then V'_n is a two-dimensional K^*-module with weights $(-k_0, nk_0)$. Hence $O(V'_n)^{K^*}$ is generated by a homogeneous invariant of degree $n + 1$ and so $\beta_{\text{sep}}(K^*, V'_n) = n + 1$. Now Proposition 6 implies

$$n + 1 = \beta_{\text{sep}}(K^*, V'_n) \leq \beta_{\text{sep}}(G)$$

and the claim follows. In addition, we have also shown that $\beta_{\text{sep}}(K^*) = \infty$.

(b) If G admits a non-trivial character $\chi: G \to K^*$ then the claim follows because $\beta_{\text{sep}}(G) \geq \beta_{\text{sep}}(K^*) = \infty$, as we have seen in (a).

(c) If the character group of G is trivial, then either G is unipotent or there is a surjective homomorphism $G \to H$ where H is semisimple (use [17, Corollary 8.1.6 (ii)]). In the first case there is a surjective homomorphism $G \to K^+$ and the claim follows from Proposition 4 and Proposition 5. In the second case the claim follows from (a).

\[\square\]

4. Relative degree bounds

In this section all groups are finite. We want to prove the following result which covers Theorem B from the first section.

Theorem 2. Let G be a finite group, $H \subset G$ a subgroup, V a G-module and W an H-module. Then

$$\beta_{\text{sep}}(H, W) \leq \beta_{\text{sep}}(G, \text{Ind}_H^G W) \quad \text{and} \quad \beta_{\text{sep}}(G, V) \leq [G : H] \beta_{\text{sep}}(H, V).$$

In particular

$$\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq [G : H] \beta_{\text{sep}}(H), \quad \text{and so} \quad \beta_{\text{sep}}(G) \leq |G|.$$

Moreover, if $H \subset G$ is normal, then

$$\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H).$$

Note that the inequalities $\beta_{\text{sep}}(G, V) \leq [G : H] \beta_{\text{sep}}(H, V)$ and $\beta_{\text{sep}}(G) \leq |G|$ were already proved by DERKSEN and KEMPER ([11, Corollary 24], [4, Corollary 3.9.14]).

The proof needs some preparation. Let V, W be finite dimensional vector spaces and $\varphi: V \to W$ a morphism, i.e. a polynomial map.

Definition 4. The **degree** of φ is defined in the following way, generalizing the degree of a polynomial function. Choose a basis (w_1,\ldots,w_m) of W, so that $\varphi(v) = \sum_{j=1}^m f_j(v)w_j$ for $v \in V$. Then

$$\deg \varphi := \max \{ \deg f_j : j = 1,\ldots,m \}.$$

It is easy to see that this is independent of the choice of a basis.

If V is a G-module and $\varphi: V \to W$ a separating morphism, then $\beta_{\text{sep}}(G, V) \leq \deg \varphi$. Moreover, there is a separating morphism $\varphi: V \to W$ for some W such that $\beta_{\text{sep}}(G, V) = \deg \varphi$.

For any (finite dimensional) vector space W we regard $W^d = W \otimes K^d$ as the direct sum of $\dim W$ copies of the standard S_d-module K^d. In this case we have the following result due to DRAISMA, KEMPER and WEHLAU [7, Theorem 3.4].
Lemma 2. The polarizations of the elementary symmetric functions form an S_d-separating set of W^d. In particular, there is an S_d-separating morphism $\psi_W : W^d \to K^N$ of degree $\leq d$.

Recall that the polarizations of a function $f \in O(U)$ to n copies of U are defined in the following way. Write

$$f(t_1u_1+t_2u_2+\cdots+t_nu_n) = \sum_{i_1,i_2,\ldots,i_n} t_1^{i_1}t_2^{i_2}\cdots t_n^{i_n} f_{i_1i_2\ldotsi_n}(u_1,u_2,\ldots,u_n)$$

Then the functions $f_{i_1i_2\ldotsi_n}(u_1,u_2,\ldots,u_n) \in O(U^n)$ are called polarizations of f. Clearly, $\deg f_{i_1i_2\ldotsi_n} \leq \deg f$. Moreover, if U is a G-module and f a G-invariant, then all $f_{i_1i_2\ldotsi_n}$ are G-invariants with respect to the diagonal action of G on U^n.

Proof of Theorem 2. The first inequality $\beta_{\text{sep}}(H,W) \leq \beta_{\text{sep}}(G,\text{Ind}_H^G W)$ is shown in Corollary 1.

Let V be a G-module, $v,w \in V$, and let $\varphi : V \to W$ be an H-separating morphism of degree $\beta_{\text{sep}}(H,V)$. Consider the partition of G into H-right cosets: $G = \bigcup_{i=1}^d Hg_i$ where $d := [G : H]$. Define the following morphism

$$\tilde{\varphi} : V \xrightarrow{\varphi} W^d \xrightarrow{\psi_W} K^N$$

where $\tilde{\varphi}(v) := (\varphi(g_1v),\ldots,\varphi(g_dv))$ and $\psi_W : W^d \to K^N$ is the separating morphism from Lemma 2.

We claim that $\tilde{\varphi}$ is G-separating. In fact, for $g \in G$ define the permutation $\sigma \in S_d$ by $Hg_i g = Hg_{\sigma(i)}$, i.e. $g_i g = h_i g_{\sigma(i)}$ for a suitable $h_i \in H$. Then $\varphi(g_i v) = \tilde{\varphi}(h_i g_{\sigma(i)} v) = \tilde{\varphi}(g_{\sigma(i)} v)$ and so $\tilde{\varphi}(g v) = \sigma^{-1} \tilde{\varphi}(v)$. This shows that $\tilde{\varphi}$ is G-invariant.

Assume now that $g v \neq w$ for all $g \in G$. This implies that $h g_i v \neq w$ for all $h \in H$ and $i = 1,\ldots,d$, and so $\varphi(g_i v) \neq \varphi(w)$ for $i = 1,\ldots,d$, because φ is H-separating. As a consequence, $\tilde{\varphi}(v) \neq \sigma \tilde{\varphi}(w)$ for all permutations $\sigma \in S_d$, hence $\tilde{\varphi}(v) \neq \tilde{\varphi}(w)$, because ψ_W is S_d-separating, and so $\tilde{\varphi}$ is G-separating.

For the degree we get $\deg \tilde{\varphi} \leq \deg \psi_W \cdot \deg \varphi \leq d \cdot \deg \psi_W = [G : H] \beta_{\text{sep}}(H,V)$. This shows that

$$\beta_{\text{sep}}(G,V) \leq [G : H] \beta_{\text{sep}}(H,V).$$

If $H \subset G$ is normal we can find an H-separating morphism $\varphi : V \to W$ of degree $\beta_{\text{sep}}(H,W)$ such that W is a G/H-module and φ is G-equivariant. Now choose an G/H-separating morphism $\psi : W \to U$ of degree $\beta_{\text{sep}}(G/H,W)$. Then the composition $\psi \circ \varphi : V \to U$ is G-separating of degree $\leq \deg \psi \cdot \deg \varphi$. Thus

$$\beta_{\text{sep}}(G,V) \leq \beta_{\text{sep}}(G/H,W) \beta_{\text{sep}}(H,V) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H),$$

and the claim follows.

5. Degree bounds for some finite groups

In principle, Proposition 3 allows to compute $\beta_{\text{sep}}(G)$ for any finite group G. Unfortunately, the invariant ring $O(V_{\text{reg}})^G$ does not behave well in a computational sense. We have been able to compute $\beta_{\text{sep}}(G)$ with Magma [1] and the algorithm of [10] in just one case (computation time about 20 minutes):
Proposition 7 (Magma and Proposition 3). Let \(\text{char } K = 2 \). Then \(\beta_{\text{sep}}(S_3) = 4 \).

Proposition 8. Let \(\text{char } K = p > 0 \) and let \(G \) be a \(p \)-group. Then \(\beta_{\text{sep}}(G) = |G| \).

Proof. Let us start with a general remark. Let \(G \) be an arbitrary finite group, and let \(V \) be a permutation module of \(G \), i.e. there is a basis \((v_1, v_2, \ldots, v_n) \) of \(V \) which is permuted under \(G \). Then the invariants are linearly spanned by the orbit sums \(s_m \) of the monomials \(m = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} \in \mathcal{O}(V) = K[x_1, x_2, \ldots, x_n] \) which are defined in the usual way:

\[
s_m := \sum_{f \in G_m} f
\]

The value of \(s_m \) on the fixed point \(v := v_1 + v_2 + \cdots + v_n \in V \) equals \(|G_m| \). Hence, \(s_m(v) = 0 \) if \(p \) divides the index \([G : G_m] \) of the stabilizer \(G_m \) of \(m \) in \(G \). It follows that for a \(p \)-group we have \(s_m(v) \neq 0 \) if and only if \(m \) is invariant under \(G \).

If, in addition, \(G \) acts transitively on the basis \((v_1, v_2, \ldots, v_n) \), then an invariant monomial \(m \) is a power of \(x_1 x_2 \cdots x_n \), and thus has degree \(\ell n \geq \dim V \). If we apply this to the regular representation, the claim follows. \(\square \)

With Corollary 1 we get the next result.

Corollary 2. Let \(\text{char } K = p > 0 \) and \(G \) be a group of order \(rp^k \) with \((r, p) = 1 \). Then \(\beta_{\text{sep}}(G) \geq p^k \).

Proposition 9. Let \(G \) be a cyclic group. Then \(\beta_{\text{sep}}(G) = |G| \).

Proof. Let \(|G| = rp^k \) where \((r, p) = 1 \), \(p = \text{char } K \), and choose two elements \(g, h \in G \) of order \(r \) and \(q := p^k \), respectively, so that \(G = \langle g, h \rangle \). We define a linear action of \(G \) on \(V := \bigoplus_{i=1}^q K v_i \) by

\[
 gv_i := \zeta \cdot v_i \quad \text{and} \quad hv_i := v_{i+1} \quad \text{for } i = 1, \ldots, q
\]

where \(\zeta \in K \) is a primitive \(r \)-th root of unity and \(v_{q+1} := v_1 \). We claim that the \(G \)-invariants \(\mathcal{O}(V)^G \) are linearly spanned by the orbit sums \(s_m \) where \(r | \deg m \). In fact, \(\mathcal{O}(V)^G \) is linearly spanned by the monomials of degree \(\ell r \) \((\ell \geq 0)\), and the subgroup \(H := \langle h \rangle \subset G \) permutes these monomials.

Now look again at the element \(v := v_1 + v_2 + \cdots + v_q \in V \). If \(r | \deg m \) then \(s_m(v) = |Hm| \), and this is non-zero if and only if the monomial \(m \) is invariant under \(H \). This implies that \(m \) is a power of \(x_1 x_2 \cdots x_q \). Since the degree of \(m \) is also a multiple of \(r \) we finally get \(\deg s_m \geq rq = |G| \). \(\square \)

Corollary 3. Let \(G \) be a finite group. Then we have

\[
 \beta_{\text{sep}}(G) \geq \max_{g \in G}(\text{ord } g).
\]

Let \(D_{2n} = \langle \sigma, \rho \rangle \) denote the dihedral group of order \(2n \) with \(\text{ord}(\sigma) = 2 \), \(\text{ord}(\rho) = n \) and \(\sigma \rho \sigma^{-1} = \rho^{-1} \).

Proposition 10. Assume that \(\text{char}(K) = p \) is an odd prime, and let \(r \geq 1 \). Then \(\beta_{\text{sep}}(D_{2pr}) = 2p^r \).

Note that if \(\text{char}(K) = p = 2 \), then \(D_{2p^r} \) is a 2-group, so \(\beta_{\text{sep}}(D_{2r+1}) = 2^{r+1} \) by Proposition 8. We conjecture that for \(\text{char}(K) = 2 \) and \(p \) an odd prime, we have \(\beta_{\text{sep}}(D_{2p}) = p + 1 \), which would fit with Proposition 7.
Let $q = p^r$ and define a linear action of D_{2p^r} on $V := \bigoplus_{i=0}^{r-1} Kv_i$ by

$$\rho v_i = v_{i+1} \text{ and } \sigma v_i = -v_{-i} \text{ for } i = 0,1,\ldots,q-1$$

where $v_j = v_i$ if $j \equiv i \mod q$ for $i,j \in \mathbb{Z}$. As before, the invariants under $H := \langle \rho \rangle$ are linearly spanned by the orbit sums $s_m := \sum_{f \in Hm} f$ of the monomials $m = x_0^i x_1^j \cdots x_{q-1}^{i,j-1} \in \mathcal{O}(V) = K[x_0, x_1, \ldots, x_{q-1}]$. Thus, the D_{2p^r}-invariants are linearly spanned by the functions $\{s_m + \sigma s_m \mid m \text{ a monomial}\}$.

For $v := v_0 + v_1 + \cdots + v_{q-1}$ we get $\sigma s_m(v) = s_m(\sigma v) = (-1)^{\deg m} s_m(v)$. Therefore, $s_m + \sigma s_m$ is non-zero on v if and only if $s_m(v) \neq 0$ and the degree of m is even. As in the proof of Proposition 9, $s_m(v) \neq 0$ implies that m is a power of $x_0 x_1 \cdots x_{q-1}$ which has to be an even power since q is odd. Thus, for $m := (x_0 x_1 \cdots x_{q-1})^2$, $s_m + \sigma s_m = 2m$ is an invariant of smallest possible degree, namely $2q$, which does not vanish on v. □

Let $I_H := \mathcal{O}(V)^G / \mathcal{O}(V)$ denote the Hilbert-ideal, i.e. the ideal in $\mathcal{O}(V)$ generated by all homogeneous invariants of positive degree. It is conjectured by Derksen and Kemper that I_H is generated by invariants of positive degree $\leq |G|$, see [4, Conjecture 3.8.6 (b)]. The following corollary shows that this conjectured bound can not be sharpened in general.

Corollary 4. Let char $K = p$ and G a p-group (with $p > 0$), or a cyclic group, or $G = D_{2p^r}$ with p odd. Then there exists a G-module V such that I_H is not generated by homogeneous invariants of positive degree strictly less than $|G|$.

Proof. In the proofs of the Propositions 8, 9 and 10 respectively, we constructed a G-module V and a non-zero $v \in V$ such that $f(v) = 0$ for all homogeneous $f \in \mathcal{O}(V)^G$ of positive degree strictly less than $|G|$, but such that there exists a homogeneous $f \in \mathcal{O}(V)^G$ of degree $|G|$ with $f(v) \neq 0$. This shows that $f \notin \mathcal{O}(V)^G_{|G|,<|G|} \mathcal{O}(V)$. □

Now we use relative degree bounds for separating invariants and good degree bounds for generating invariants of non-modular groups, that appear as a subquotient, to get improved degree bounds for separating invariants in the modular case.

Proposition 11. Let char $K = p$ and G be a finite group. Assume there exists a chain of subgroups $N \subset H \subset G$ such that N is a normal subgroup of H and such that H/N is non-cyclic of order s coprime to p. Then

$$\beta_{\text{sep}}(G) \leq \begin{cases} \frac{3}{2}|G| & \text{in case } s \text{ is even} \\ \frac{5}{8}|G| & \text{in case } s \text{ is odd.} \end{cases}$$

Proof. By Sezer [16], for a non-cyclic non-modular group U, we have $\beta(U) \leq \frac{3}{4}|U|$ in case $|U|$ is even, and $\beta(U) \leq \frac{5}{8}|U|$ in case $|U|$ is odd. We now assume s is even; the other case is essentially the same. Since $\beta_{\text{sep}}(U) \leq \beta(U)$ always holds, we get by using Theorem 2

$$\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(H)[G:H] \leq \beta_{\text{sep}}(N) \beta_{\text{sep}}(H/N)[G:H]$$

$$\leq \beta(H/N)[G:H]|N| \leq \frac{3}{4}[H:N][G:H]|N| = \frac{3}{4}|G|.$$

□
Example 1. Assume $p = 3$ and $G = A_4$. The Klein four group is a non-cyclic non-modular subgroup of even order. We get $\beta_{\text{sep}}(A_4) \leq \frac{3}{4} |A_4| = 9$. Application of Theorem 2 shows $\beta_{\text{sep}}(A_4 \times A_4) \leq \beta_{\text{sep}}(A_4)^2 \leq 81$.

Example 2. Let D_{2n} be the dihedral group of order $2n$. We know $n \leq \beta_{\text{sep}}(D_{2n})$ by Corollary 3. Assume char $K = p \neq 2$ and $n = p^r m$ with p, m coprime and $m > 1$. Then D_{2n} has the non-cyclic subgroup D_{2m} of even order, so $\beta_{\text{sep}}(D_{2n}) \leq \frac{3}{4} 2n = \frac{3}{2} n$. So the only dihedral groups, to which the proposition above does not apply, are those of the form D_{2p^r}, which are covered by Proposition 10.

We end this section with two questions:

Question 1. Which finite groups G satisfy $\beta_{\text{sep}}(G) = |G|$?

Question 2. Which finite groups G do not have a non-cyclic non-modular subquotient?

The dihedral groups of Proposition 10 satisfy this property, and we get $\beta_{\text{sep}}(G) = |G|$ for those groups. But in characteristic 2, $\beta_{\text{sep}}(S_3) < |S_3|$ by Proposition 7, so the answer to the second question only partially helps to solve the first one.

References

Zentrum Mathematik - M11, Technische Universität München, Boltzmannstrasse 3, D-85748 Garching, Germany

E-mail address: kohls@ma.tum.de

Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland

E-mail address: Hanspeter.Kraft@unibas.ch