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Introduction

0.1. Let V}, V,, ..., V, be finite dimensional vector spaces over some algebraically
closed field k of characteristic zero. Consider the space
L:=Hom(V, V) x Hom(V,, V;) x ... x Hom(V,,_,, V)

whose elements

Am-1 Vm

AV, 2y, sy
can be viewed as representations of a certain fixed dimension of the Dynkin quiver
A,, (oriented in the obvious way; cf. [2]). The group

G:=GL(V)) xGL(V,) x ... xGL(V,))

acts in a natural way on L and the orbits are just the equivalence classes of these
representations: in particular there are only a finite number of orbits in L. It is an
interesting task to describe the degenerations of these orbits and to determine the
singularities in the closure O of a given orbit 0. The first problem has been solved
in [1] (cf. also 2.2 and 9.1). If A€ L is a complex (i.e. A; 4 1A;=0 for all i), Kempf has
shown in [8] that the closure O, of its orbit O , has rational singularities (cf. 1.4 for
definitions). We will prove this result in general.

0.2. Theorem. For any AeL the closure O , of its orbit is normal, Cohen-Macaulay
with rational singularities.

Our method is similar to the one developed in [13] and is based on the first
fundamental theorem of invariant theory (1.2) (compare also with [10]). To the

* Both authors belong to the group GNSAGA of CNR o
** This work has been done during the last author was a guest at the Forschungsinstitut fir
Mathematik (ETH Ziirich) and at the University of Rome
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element A=(A4,,..,A4,)eL we associate two other elements (5.4, basic
construction):

/ieL~:=Hom(V1,U1)x Hom(U,,V,) x ... x Hom(U V)

m—1>"m

x. Ay I Az Iy Am-1 Im-y
AVi— U, SV,—>U, ... »U, _, >V,

where U;:=ImA;CV,,, and A4,=1,4;:V,—»U, >V, is the canonical decom-
position, and

A’eLL’:=Hom(U,,U,) x Hom(U,,U,) x ... x Hom(U,,_,,U,,_,)

Ay Am-2

Uy—s. 222,y

4:U,-45u, m—1
Aj=A4,;, I, Now we consider the two quotient maps (5.1, first fundamental
theorem)

I—=
e

L

defined by “composing”:
n(B,,C,,B,,C,,..)=(B,C,,B,C,, ...),
¢(B,Cy,B,,C,,..)=(C,B,,C,B,, ..)).

By construction we have n(4)= A4, o(A)= A, and we will show (Proposition 5.5)

a) n'(0,)=0; and codim;0;=codim,0,,

b) 60)=0,. _
By induction (on the length m of the quiver) we may assume that O, is Cohen-
Macaulay with rational singularities. This implies by a) that O 4 18 Cohen-
Macaulay. Using a natural desingularization of O i (Section 6) and a result of
Kempf (Corollary 1.4) we are able to prove that O 4 has rational singularities too
(Proposition 7.1). Since o is a_quotient map and 0(0 1)=0, by b), we get from
Boutot’s theorem (1.3b) that O, is normal, Cohen-Macaulay with rational sin-
gularities.

0.3. Our second main theorem deals with the singularities arising in the closure O
of an orbit O CL. We describe the type (up to smooth equivalence) of the
singularity of O in a minimal degeneration O', ie. O’ is an open orbit in 0 —O.
Using the description of the degenerations given in [1] we associate in a purely
combinatorial way to each minimal degeneration 0'CO a pair (p,q) of natural
numbers, called the index of the minimal degeneration (9.1).

Theorem. Let 0'CO be a minimal degeneration of index (p,q). Then O is of
codimension p+q— 1 in O and the singularity of O in O’ is smoothl y equivalent to the
isolated singularity of the determinantal variety D, ={4eM, Itk AL1} in the
origine.
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Our method here is similar to the one in [11]. We describe the orbits in L by a
diagram of boxes (2.3), the rows representing the indecomposable factors of the
corresponding representation. Given two orbits 0, and 0,, 0,C0,, with associat-
ed diagram of boxes v and 4, we give some reduction procedures which enable us
to remove (under certain conditions) common rows (10.2) and common columns
(10.1) to obtain a new pair of orbits O, and 0, in some smaller space L’ with the
same type of singularity of O, in 0, as 0, in 0,. In case of a minimal degeneration
of index (p,q) this procedure will end up in the pair 0, =D, ,—{0}, 0,={0},
proving the claim (10.4).

1. Notations and Preliminaries

1.1. Notations. We always work over an algebraically closed field k of characteris-
tic zero. For finite dimensional k-vector spaces Vi, Vs, .., V,, we define

LV, V,,...,V,):
=Hom,(V}, V) x Hom,(V,, V;) x ... x Hom,(V,_,, V.

m—1"m

and

G(Vy, Vs .a V) 1= GL(V)) x GL(V,) x ... x GL(V,).

This group acts in a natural way on L(Vy, ..., V,). For any Ae L(V,,...,V,) we
denote by 0, its orbit in L(V,, ..., V,,).

1.2. Quotients, First Fundamental Theorem. If a reductive group G acts regularly
on an affine variety Z a regular map n:Z—X from Z into some affine variety X will
be called a quotient with respect to G if m induces a surjective map from the regular
functions on X onto the G-invariant functions on Z.

The first fundamental theorem of invariant theory tells us (cf. [15,11.6,
Theorem 2.6A] or [14,Par. 3, Théoréme 3]) that the map

n:Hom(U, V) x Hom(V, W)-»Hom(U, W)

given by (A, B)—BA is a quotient with respect to GL(V).

L.3. Some Properties of Quotients. Let n: Z—X be a quotient map with respect to a
reductive group G.

a) If Y CZ is G-stable and closed then n(Y) CX is closed and nly:Y->X is a
quotient [12, Chap.I, Sect.2].
In particular we remark that if in addition Y is normal n(Y) is normal too.

b) Boutot’s Theorem: If Z has rational singularities (1.4) n(Z) has rational
singularities too (cf. [6])

1.4. Rational Singularities. Let X be an irreducible variety and ¢:Y—X a
resolution of singularities, i.e. Y is smooth and ¢ is birational and proper. One says
that X has rational singularities if a) X is normal and b) the direct images R'qp Oy of
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the structure sheaf Oy vanish for i>0. (One can show that this definition does not
depend on the resolution ¢.) One has the following result due to Kempf:

Proposition (cf. [7, p. 50, Proposition]). Let ¢:Y—X be a resolution of singularities,
n:=dimX. The following statements are equivalent :

() X has rational singularities.

(i) X is normal and Cohen-Macaulay and for every n-form w defined on the
smooth part of X the form @*w extends to the whole variety Y.

From this we immediately deduce the following criterion, which will be very
useful for our task.

Corollary. Let X be an irreducible Cohen-M acaulay variety and ¢ : Y-X a resolution
of singularities. Assume that there is a closed subset X' CX such that X has rational
singularities in X —X' and ¢~ '(X") has codimension at least 2 in Y. Then X has
rational singularities.

(In fact X is normal in X —X’, hence normal by Serre’s criterion [4,1V,
Théoréme 5.8.6]. Given any n-form « defined outside the singular locus of X, we
can first extend @*w to ¢~ (X —X’) since X —X’ has rational singularities, and
then to the whole variety Y, since ¢ ~!(X’) has codimension at least 2)

2. Degenerations of Orbits in L

2.1. We recall here some facts proved in [1] (cf. also [2]). To each element
A=(Ay,..,A,_)eL:=LV,,..., V,) we associate an indexed set of integers n4
={ng,j)}1§i§j§m defined by

a . Jik(4;_,..4;,, A) for i<j
©2" \dim¥, for i=j.
It is clear that n* depends only on the orbit O,

2.2. Proposition [1, Proposition 3.1]. For A, Be L we have 05 S0, if and only if
ng p<né , forall 1Si<j<n

In particular the orbit O, is determined by n.
2.3. We also introduce the following indexed set of integers M= Di<icizm:
A . _ A A A A
A =G, =M1, = ey F 1 -

(We put n§ ,=0if r<1 or s>m.)

These numbers have the following interpretation (cf. [1]): Each representation
AeL has a unique decomposition into a direct sum A=@®E, of indecomposable
representations E_ which are of the form

E; (1)—>(2)—-—> .—»{_c—id»k—m—n . .irljc——>0———>. . ~+2

for some 1 <i<j<m/(cf. [2,2.2]). Now A j) is the number of indecomposable factors
E,. of A of type E

(%))
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Clearly n* is determined by A4:

4 _ 4
nipy= X Ar.s)-
isj

r=< s

A

It is convenient to represent 4 as a “diagram of boxes”, each row starting at i and
ending at j stands for one indecomposable factor of type E; .
E.g. the following diagram represents A4 for A isomorphic to

E(l, 6)®E(1, 3)®E(3,6)®E(3,4)®E(3,4)®E(5,6)®E(5, 5) :

[ 1]
1]

e

2.4. Conversely any indexed set A=(4¢ y)1 <i<j<m Of natural numbers determines

an orbit in L(V}, V), ..., V,) provided dimV,=/,: = Y. 4.5 (=3 boxes in the it*
r<iss

column of A). We will shortly call such an indexed set a diagram, define

dimA:=(4,,...4,)eIN™ to be its dimension and denote by O, the corresponding

orbit. For any A€ 0, we have by definition

mG =Nt = r<i;j<si(r’sr
In this way we get a bijection between the orbits in L(Vy, ..., V,) and the diagrams
of dimension (dimV, ...,dimV,).
If0,, 0, are orbits in L(V,, ..., V,)), we say v< A if0, 0, ie.if n i gn(‘i,j) for all
(i,)) (cf. Proposition 2.2). This define an ordering on the set of all diagrams of a fixed
dimension.

3. Dimension Formula for Stabilizers

3.1. For any AeL:=L(V,,...,V,) we denote by StabA the stabilizer of A in the
group G:=G(V,,...,V):

oV

StabA={geGlgA=A}.

It is easy to see that its Lie algebra Lie Stab4 CEnd(V,)x ... x End(V,) is the
endomorphism ring of A:
LieStabA=End;A4.
Furthermore we have
k isr<jss
0 otherwise

/

Homg(E,, ,, E; ;)= {

for the indecomposable representations Ej; ; (2.3). Using the decomposition of 4
into indecomposable factors this proves the first part of the following lemma ; the
second follows by direct computation from the definition of ¢  in 2.3.
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3.2. Lemma.

dim StabA = Z A8 5 A

4. An Induction Lemma

4.1. Let W,, W,, ..., W, be finite dimensional vector spaces, n>2, and fix an integer
te{2,3,...,n—1}. Consider the map

P

n:=n.L:=LW,.. W)L :=LW,...W,..,W)

given by A=(A4,,...,4,_ W4, ...,A4,A,_, ... A,_,) Le. by composing at the t®
point. This is a quotient map with respect to GL(W)) (first fundamental theorem, cf.
1.2).

4.2. Proposition. Assume dimW,_,, dimW,,; < dim W,
a) The map m is smoothin L°:={A=(A,,...,A,_,)e L|A,_, or A, has maximal
rank}.
Forany A=(A,,...,A,_,)e L such that A,_, and A, have maximal rank we have
b) dim StabA = dim Stabn(A) + (dlm W, —rk A ) (d1m W,—1kA,_,) and
¢) n” (0 ,))=0, and codim, 0 ,= codim,, 0, ,,.

Proof. a) The tangent map of = in Ae L is given by
dm) X, ... X, )=, ... XA _+A4X,_ ;... X,_)).

Hence (dn),, is surjective if either A4,_, is injective or A4, is surjective, ie. if A€ L°.
b) It is easy to describe the decomposition of n(A4) into indecomposable factors
from the decomposition of A. For this let us label the quiver corresponding to L’ by

b i I e T UL
12 t-1  t+1 n

and define for ie {1,2, ..., n} the integers i’ and i" by i’ =i"=ifori+tand t' =t+1,
t"=t—1. Then the factors of 4 of type E,, , disappear and a factor of type E; ; of
A with (i, j) #(t, t) becomes a factor of type E;. ;., of n(A). Since by assumption 4, _,
is injective and A, is surjective, we don’t have factors of type E, ,_; or E,,, ;in 4,
and therefore A3 ,_ =A%, ;,=0. It follows that

A A n(A) n(A)
Z ’1(1 J)/l(" D Z /l(, 2 J" )A(r s") -
iSr<j<s VSrsj'ss”
(r, ) *(t,1)

Hence from the dimension formula 3.2 we get

dim Stab 4 = dim Stabn(4) + Z & A

1=i
tss

lII\"/\
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The last sum is equal to (Z Ag’,,)-(z l{}’s)) and it is easy to see that
ist

t<s

Y Al ,=dimKer4,=dimW,-rk 4,

ist

and
Y A g=codimImA,_, =dimW,—rk4,_,.
t<s
¢) We have n(0,)=0,,,, hence n(0,)=0,,,, by 1.3a). Furthermore any Ce L

. C — n(C) . . . . . A _ A A
satisfies ng j=ng') for i1, j*t, i<j, and by assumption nf,=nt, , nf

=ng+1’j) for i<t and j>t. Now for Be L with n(B)e Om) we get for all (i, )) nff’ﬁ
<n7“) by 2.2. Hence ng ,<nd j foristand j+t and therefore

B B — 3,7(B) T(A) A A
ity S M= 1) = Moot 1) NG 1) =M e 1) =N

for i<t and

B B — ,n(B) n(A) Y | |
M, Sl 1, = Mer 1, ) SN, ) =Ma+ 1,5 =N, j

for j>t. This proves BeO, by 2.2, i.e. n”(n(0,))=0,,. From b) we get (setting
d;: = dim W)
codim; 0 ,=dim L —dim G + dim Stab A
=dim L — dim G + dim Stabn(A)
+(d:_‘d:+ 1)(d[—dt— 1)
=(dimL—dd,_,—d,, d,+d,, d,_,)
—(dim G — d?) + dim Stabr(A4)
=dim L' — dim G’ + dim Stabn(A4)
=codim; .0, qed
4.3. Remark. It is immediate from the proof above that the proposition holds also
for t=1 and t=n, i.e. for the two projections
n, LW, .., W)——LW,,...W,),
LW, .. ,W)——LW,,...W,_)).

(We set W,=0 for i<l or i>nand 4,=0ifi<l ori>n—1)

5. The Basic Construction

5.1. Let V,,V,,...,V,, and U,,U,,..., U, _ be finite dimensional vector spaces.
Consider the following two maps = and ¢

EI =L(V19 Uls V2’ Uzs (Xt} Um—l’ Vm)—n"Ll : =L(U1’ e U"'_l)

e

L:=LV,,...V,)
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given by
(B, Cy,B;,Cy, ... B, _1,C,_)=(B,Cy,BsCs, ... B, _,C,_>),
Q(Bl: Cp Bz, C2, L] Bm— 1° Cm—l)z(CIBl’ CZBZ’ e Cm— le— 1)'

Define
G:=G(V,,...V,),

G:=GU,,...U,_,)
and
G:=G(V,U, VU, ..sU,_ 1, Vo).

The group G is canonically isomorphic to G xG’, the maps = and ¢ are
equivariant with respect to the projections G— G’ and G— G and are quotient maps
with respect to G and G’ respectively (cf. first fundamental theorem 1.2).

5.2. We remark that the map = is a composition n=mn,,_, -7

_,...-m,-p of the
following form :

[——L,:=LU,Vy...Vy_, U, _,)
L, =LU,;,Uy Vs Vo s Up_y)
m3
Ly:=LU,,U,U,V,,...U,_,)

|

l m=-1
L'=L, ,:=LU,U,,...U,_,)

where p is the canonical projection and 7, is the quotient with respect to GL(V)), i.e.
it is of the form given in 4.1.
5.3. Consider the following two subsets of L:
L°:={(B,,Cy,..sBp_1,Cpp_ )
for each i=1, ..., m—2 either C, is injective or B;, , is surjective}
L™ ={(B},C}, ..., Bp_ 1, Cp )|
all B; are surjective and all C, are injective}.

Proposition. Assume dimU,<dimV, dimV,, , fori=1,...,m—1. Then L°> L™ are
not empty and
a) 7 is smooth in L°,
b) ol ,:m.,,‘:lj'“a"—ag(i“‘“) is a fibration with typical fibre G(U,, ...,U,,_,).
(Here fibration means locally trivial in the étale topology.)
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'roof. The first assertion is clear. For a) consider the decomposition of 7 given in
2. The assumption implies that each L; in (x) satisfies the condition of
roposition 4.2 and that we can apply 4.2a) to the image of L° in L,. Since p is
learly smooth this implies that 7 is smooth in L°. For b) consxder the group

m—1

I:= ﬂ (GL(V)) x GL(U;) x GL(V;,,)) which operates in a natural way on L
i=1
ndon L:
(gl’ 19911927 zagzs‘ )(Bl,Csz’Cz"")
=(h,B,9; ,91C1h1 Lh 2B19; >92C hy L),

(glahlag’bgbhz’g’zsH')(DlaDz,--~):(g1 191 sgzngz—l"“)'

Now clearly L™ is an orbit under H and g is H-equivariant. This implies that the
nap g|gmex is of the form H/H,—H/H, with two subgroups H, CH,CH, hence
ocally trivial in the étale topology. Furthermore it is obvious that for each Ce L™
he fibre ¢~ 1(o(C)) is the G(U,, ...,U,,_,) orbit of C and the stabilizer of C in
HU,, ..., U,_,) is trivial. qed

3.4. Now let us start with a fixed element Ae L,

Defining U;: =ImA4,CV, i=1,...,m—1, we get the following basic construction:

m—2 m 1
\/\ Y /‘ Im-1
m L

Here A,=1,- A, is the canonical factorization and A}:=A;, I, In this way we have
assocmted to AeL two elements Ae L and A'eL’:

7 Ay I A2 Am—1 Im-1

A VI 'Ul AVZ AVm*l Um—l 'Vm’

. ; Apm-
AU, 2 U, U, 5 U, ,—25U,

such that mn(d)=A' and o(A)=A. Let us denote by O4 O, and O, the
corresponding orbits in L, L' and L respectively.

Remark. It follows from the construction that the diagram of 4" is obtained from
the diagram of A by removing the last box of each row:

A _)4A
}‘(i,j)—'l(i.j'* -
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5.5. The main induction step for the proof of Theorem 0.2 is the following result.

Proposition. Set N ,:=n"'(0,.). Then
(i) 0;= Q'l(OA)CL"‘*‘x and (0 5)=0,.,
(i) 0 =N, and o(N )= OA,
(iii) codlmLN = codim,.0,..

Proof. Since n(A)=A’" and 0(A)=A4 we get n(07)=0, and 0(0;)=0,. Further-
more Ae L™ and 0~ (A) is an orbit under G(U,, ..., U,,_,) by construction (cf.
proof of Proposition 5.3), hence ¢~ *(0 )= 0 ;. This proves i). For ii) and iii) we use
the decomposition (x) of = (5.2) and remark that each L, in () satisfies the
assumption of Proposition 4.2. Since p is smooth and A, and Im , are of maximal
rank we first get codim;0 ;=codim, p(0 ;) and p~ 1(p(O 1)=0 ;. Now the image of

A in each L; satisfies the assumption of 4.2c). Hence we get by induction O
=n"Y(n(0 A)) N, and codim;N ,=codim;.0,. qed

5.6. Remark. The construction of the orbit O . from the orbit O, does not depend
on the special choice of the vector spaces U,, but only on their dimensions. More
precisely we can formulate the Proposition 5.5 in the following way:

If 0, is an orbit in L(V,, ..., V,)) with associated diagram A and U,,...,U, _, are
vector spaces of dimension dimU,=n{; i+1) and if we denote by ) the diagram
thamed from A by removing the last box in each row (i.e. A; =4, ;. 1)) then we

ave
(i) @~ X(0,) is an orbit in L contained in L™, 0, =n(e”(0),)),
(ii)Ql()ﬂ(O) _
(iii) codimin1(0,,)= codim,.0,..

6. A Resolution of Singularities

6.1. We fix an element CeL: =L(W,, W,, .., W,), C=(C,,C,,...,C,_ ).

For each i=1,2,...,n consider the flag varzety &, of flags
F,=(F)=W,2F! 2F*2.. DF' ') of nationality (n§,,
(ie. dimF'—-n(l 0i)-

E.g. # is a point and %, is a grassmanian. For B;W-»W, . F j€%#; and
F;, €%;,, we shortly write BF;CF;, if B;F;CF;}] for all t=0, 1 .j—1.Of
course G:=G(W,,...,W,) acts in the obvious way on Fo:=F XF, X. xé*"".
Define Y:=Y.CL x % to be the subvariety of pairs (B,F), B (B, ... B,_)),
F=(F,,.. F)satzsfymg

C C
MG 1,0y M= 2,ip o 1, 0)

B;F,CF; ,, j=1,..,n—1.

JJ=
It is clear that Yc is a closed and G-stable subvariety. Let us consider the two maps
Y,—2-L
p

e



Geometry of Representations of 4,, 411

induced by the two projections of L x Fc. It is easy to see that p:Y.-F isa
subvectorbundle of the trivial bundle pr: L x Fc—Fc. In particular Y, is a smooth
variety. Furthermore & is proper, since Y.C L x Fc is closed and %, is projective.

6.2. Lemma. &(Y.)= O and the induced map ¢ :Y,— 0, is proper and birational, i.e.
¢ is a resolution of singularities (1.4).

Proof. The definition of Y, implies that for each (B, F)e Y., B:=(B,,...,B,_,),
F:=(F,,...F,) we have B;_,...B(W,)CFi™" for j>i, hence ng y<dimF{~'=n{ .
Therefore BeO, by Proposition2.2 which implies ®(Y.) CO.. Furthermore
¢ HO)={(C,Fo)}, Fc=(F,,...,F,) defined by Fi:=C;_,...C;_(W,_,) for t<i
(F,:=W,). In particular Ce &(Y.) and hence d(Y.)=0,. (since Y. is G-stable and
closed and @ is proper), and ¢ induces an isomorphism @~ 1(0g)> 0 and so0 ¢ is
birational. qed

7. Proof of the First Main Theorem

7.1. Now we go back to the basic construction 5.4. The preof of the theorem 0.2
follows immediately by induction from the following result.

Proposition (Notations of Sect.5). If 0,, has rational singularities (1.4), then
N,=n"%0,) and O 4 have rational singularities too.

Proof. Since O =0(N 4) [Proposition 5.5ii and since ¢ is a quotient map, the first
assertion implies the second by Boutot’s theorem (1.3b)]. From Lemma 6.2 we

get a desingularization of N ;=0 ; (5.5ii):
Q: YJ—>NA = 61‘1 .

YiCLxF4L:=L(V,,U,,V,, Uy, ..U, _ V),

Fi=F | XF| X Fy X Fy X ... x F_, xF, (in obvious notations). The codimen-
sion result 5.4iii) implies that the schematic inverse image 7~ (0 4+) is Cohen-
Macaulay [4,1V, Proposition 15.4.2¢')=-a)]. Since the map = is smooth in NY:
=N,nL° (5.3a) and since O, has rational singularities, 7~ '(0 ) is a reduced
Cohen-Macaulay variety, being smooth in the dense open set O 1C N9 (5.5, ii),
[4,1V,5.8.5], with rational singularities in N. The following lemma enables us to
apply Corollary 1.4 which implies the claim. qed

7.2. Lemma. codim, .o~ }(N,—N9=2.

Proof. Let C:=N,—N¢. It is enough to prove that for each FeZ; the set
@~ (C)np~ !(F) has codimension at least 2 in p~ }(F) (p: Y;— % is the projection
7.1). The fibre p~}(F) is a product H, XK, xH, x ... xH,,_, xK, _ of subspaces
H;CHom(V, U)), K,c Hom(U, V,, ,). By construction ¢~ {(C)np~(F) is a union
of subvarieties D;CH; xK, x ... xH,,_y xK,,_;.j=1,..,m—1,D, dgﬁned by the
condition that the element in H; is not surjective and the element in K j 18 not
injective. Since the generic element of H ;1s surjective and the generic element of K ;
Is injective the subvariety D ; is of codimension greater or equal to 2. ged
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8. Determinantal Singularities

8.1. Definition (cf. [5] 1.7). Consider two varieties X, Y and two points xeX, ye Y.
Then the singularity of X in x is called smoothly equivalent to the singularity of Y in
y if there is a variety Z, a point ze Z and two maps

Zz—2 X

v

Y

such that ¢(z)=x, y(z)=y, and ¢ and y are smooth in z.

This clearly defines an equivalence relation between pointed varieties (X, x). We
denote the equivalence class of (X, x) by Sing (X, x).

Assume that an algebraic group G acts regularly on the variety X. Then
Sing(X, x)=Sing(X, x') if x and x’ belong to the same orbit O. In this case we
denote the equivalence class also by Sing(X, 0).

8.2. For two vector spaces U, V of dimension p, g respectively consider the orbit
0,.:..C L(U, V) of maps of rank 1. Then O,,,=0,,,w{0} and 00, is an isolated
rational singularity (Theorem 0.2, cf. [9, Sect. 2]). We denote its equivalence class
byd, .: _

Sing(0

We have dim0,, =p+q—1 and O
0,.in=L(U, V)].

Assuming p,q> 1, one gets for any (r,s):d, ;=d, , if and only if (r,s)=(p, q) or
(r,s)=(q, p). [Since both are represented by isolated singularities one has p+qg—1
=r+s— 1. Since I(U, V) is the Zariskitangentspace of O, in O we must also have

p-q=r-s.]

min®

0)=d,,.
is smooth if and only if p=1 or g=1 [ie.

min

8.3. It is easy to describe a resolution of singularities of O,;,.
Choose a basis e, ...,e, of U and a basis f;, ..., f, of V and consider the one
dimensional subspace

M:={Ae L(U,V)|Ae, Ckf,, Ae;=0fori=2,...,p}.

Then the stabilizer P of M in G:=G(U,V) is the parabolic
P=P, xP; CGL(U)xGL(V)=G, where P,, P, are the stabilizers of the lines
ke, kf;.

Now G/P=1IP?~! x[P?" !, the associated bundle

G xPM—G/P

ey’

is the line bundle O ,-, ,-:(—1) (given by the Segre embedding) and the
canonical map PP
¢:Gx*M—0,,,

is a resolution of singularities [with ¢~ 1(0)=zero section of the line bundle].
Hence we obtain the singularity d,, , by “collapsing” the line bundle (911:” gt (=1

(cf. [9]).
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8.4. Let usrecall that an orbit O’ is called a minimal degeneration of the orbit O CL
if 0’ is open in O — O, or equivalently if for each orbit 0” such that 0’ 0" SO we
have either 0"=0 or 0”"=0'". In the following Sect.9 we will associate to any
minimal degeneration a pair (p,q) of natural numbers called the index of the
minimal degeneration; it can easily be read off the diagrams of the orbits.

Now we can reformulate our second main theorem (cf. 0.3).

Theorem. Let O'CO be a minimal degeneration of orbits in L(V,, ..., V,) with index
(p.9)- Then

codimy; O'=p+g—1 and Sing(0,0)=d,,.

The proof will be given in section 10; it uses two general reduction results for
singularities in closures of orbits O CL(V, ..., V,,) (10.1,10.2). From 8.2 we obtain
the following corollary:

Corollary. If O’ C O is a minimal degeneration with codimy 0’ £2, then O is smooth in
0.

In particular the singular locus of O can be strictly smaller than the boundary
00=0 —0, even if 00 has codimension =>2.

9. The Index of a Minimal Degeneration

In order to define the index of a minimal degeneration O’ C O we have to recall the
main result on degenerations of orbits in L=L(V,, ..., ¥,) proved in [1].

9.1. Proposition. Let O'CO be a minimal degeneration, v<A the associated
diagrams. Then there are natural numbers a<b, b—1=c<d such that

/,{(i,j) for (l’.]) :4: (a’ d)s (aa C), (ba d)a (ba C)
i(a,c) + 1 fOr (15.]) = (a’ C)

Vi, p=1 Aeat1 for (@j)=(bd)

j'(a,d) -1 for (lvj) = (a’ d)

Moo=t for ()=(b0) if b=c.

Clearly the numbers a, b, c,d are uniquely determined by the two diagrams v <A.

Definition. With the notations of the proposition above the pair (v, .V, 4) 18
called the index of the minimal degeneration.

9.2. In more geometric terms Proposition 9.1 means that for a minimal degenera-
tion O,C0, the diagram v is obtained from the diagram A performing one of the
following two operations:

a b c d .
a) a shift, i.e. a pair of rows of A of the form [TTTTTTTTTII1s replaced

a b c d
by the pair [T T [ 111 )
P IrTTrirr
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a b a -
b) acut,ie.arow T T T TITT1] dlofiisreplaced by the pair EDIEEED:&I
(here c=b—1),
and all other rows remain unchanged.
In both cases the index (p, ¢) is given by the numbers of the rows la]:!]:[[]jj
and b[[:[:]:l]:]‘j in the diagram v.

Clearly a cut or a shift always define a degeneration. But in general such a
degeneration is not minimal, as one easily sees from examples. The following
lemma gives additional conditions for a minimal degeneration showing that
certain rows cannot appear in A and v. (The proof is purely combinatorial and left
to the reader.)

Lemma. Let 0,C0; be a minimal degeneration and consider the numbers a<b,
b—1=c<d given in Proposition9.1. Then

Ai,y=Ve =0 for a<i<h,c<j<d and
(i.j)*(a,c),(a,d), (b, c), (b,d).

9.3. We now can prove the codimension formula given in Theorems 0.3 and 8.4.
Proposition. Let O'CO be a minimal degeneration with index (p,q). Then
codimgO' =p+q—1.

Proof. In order to simplify the notations let us denote by [a,b] the diagram
consisting in one row starting at a and ending at b. Furthermore define for two
diagrams o and f:

ho,p)= ) %, iy Ber,s)

isr<jss
From 3.2 we have for A€0, that dim Stab A =h(/, 1), hence
codimg O, =h(v,v)—h(4,1).
Now one easily checks the following equations:

1 for asi<b,c<j<d
0 otherwise

h(La, c]+[b,d], [i,j1)— h([a, d] + [b, ], [i,j]) ={

1 for a<iZbhc<j=d
0 otherwise.

h([i,j1, [a, ]+ [b,d])— h([i,j], [a,d] +[b,c]) ={

(x+ B denotes the diagram consisting of the union of the rows of « and B.)

Since v<4 is a minimal degeneration, there are numbers a<b, b—1<c<d
satisfying the equations of Proposition9.1, ie. A=[a,d]+[b,c]+35, v=[a,c]
+[b,d] + 6 for a suitable diagram 6 (delet [b, c] if b > c). By definition of the index
(p,q) we have 6=(p—1) [a,c]+(q—1) [b,d] + &', 5’ a diagram with 0,0 =0, a=0.
Furthermore it follows from Lemma9.2 that

04,5=0 for a<ish, c=<j=d, (ij)*(a,d), (b,c).
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Hence we find
h(v,v)—h(4,A)
=h(a,c]+[b,d],[a,c]+[b,d])—h(a,d]+[b,cl,[a,d]+[b,c])
+h([a,c]+[b,d],6)—h([a,d] +[b,c],d)
+h(d,[a,c]+[b,d])—h(,[a,d]+[b,c])
=1+(p—-1)+(@—1). qed

10. Some Reduction Results, Proof of the Second Main Theorem

Let O,, O, be orbits in L(V}, ..., V,), OVCO - V=4 the associated diagrams (2.4). In
this section we will describe some procedures in order to obtain from the pair v<21
a new pair v <A’ of diagrams with less boxes such that

Sing(éb Ov) = Sing(él’, Ov’) .

(Compare [11] where the same is done for conjugacy classes of matrices.)

10.1. For the first reduction result let us consider the quotient map
ni=m: LV, .. V)= LV, oo Vs V)

for some fixed te{1,2,...,m}, given by (4,,...,4,_ (A ... A A1 v Ay)
(4.2,4.3; we always set V;=0 if i<l or i>m and 4,=0if i<l or i>m—1). I
0,CL(V,, ..., V,) is an orbit with associated diagram A the diagram A’ of the orbit
n(0,) is obtained from A by removing the ™ column (and pushing the two parts

together).

Proposition. Assume dimV,, ,, dimV,_, <dimV, Let A,BeL(V,,...,V,), BeO,,
such that A,_, and A, have maximal rank and either B,_, is injective or B, is
surjective. Then

Eg A= ' gives A'=[I

[T

Sing(0 ,, 0)=Sing(0 (4, Ors) -

Proof. The claim follows immediately from Proposition4.2 (and Remark 4.3). In
fact we have by assumption O, 0pCL%:={CeL(V}, ... V)IC,-, or C, has
maximal rank} and 0, =7~ '(n(0 4))=7""(Op4) (4.2c). Hence n induces a smooth
map

7:0,nL°—0,,
[4.2a)] with 7(0p)=0, and so by Definition 8.1
Sing(0,, 0) =Sing(Oyuy, Ouip) - Ged
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10.2. Our second reduction result is obtained in the following way. For

AeL(Vy,...,V,), CeL(W,, ..., W,) the sum A@B is defined using the canonical
embedding

LV, ..o VJBLW,, ..., W,) SL(V,®W,, ..., V,®W,).

If A and 6 are the associated diagrams to O , and O, the diagram of O Agc 18 A+0,
given by

(A+0)g, )1 =44, +8, 5
i.e. A+J consists in the union of the rows of A and .

Proposition. Let A,Be L(V, ..., V), Ce L(W,,..,W,).

a) We have 0,CO, if and only if Ogec CO 4 ¢ Furthermore if OgecCO  pcisa
minimal degeneration then Oz CO , is a minimal degeneration.

b) If 05,CO, and if codim, 0= codimg, ; .Opgc, then

Sing(0,,0,) = Sing(0 46c Opec)-

Proof. a) follows from 2.2 since n$°=n¢ , +n, ; for all (i, ).

For b) consider the subgroup H=G(V,, ..., V,) xG(W,, ..., W,)CG:
=GV,®W,, ...V, ®W,), operating on E:=L(V,, ..., V,)®LW,, ..., W,).

Then 0:=0, xO¢ and 0': =0y x O are orbits under H in Eand 0=0, x O,.
Hence Sing(0,0")= Sing(0,,0,) and codimz0’ =codimg 0. Furthermore we
have the decomposition

LieG= @ End(V;®@W)=LieHON
i=1

with N:= @ (Hom(V, W)®Hom(W,, V). Now under the operation of LieG on
i=1

LVi®W,,...V,,®W,) we clearly have NENnE=0. Since 0. is normal (0.2) the
claim follows from Lemma 10.3 below. qed

Remark. In terms of diagrams v < 1 the proposition says that we can remove some
common rows of 4 and v without changing the type of singularity, provided the
codimension does not change. More precisely, if A=4'+8, v=v+8 with some
diagram & such that codimg,0,=codimg,,0,,, then Sing(0,, 0,)=Sing(0,.,0,).

10.3. Lemma [11, Proposition4.2]. Let G be an algebraic group, HC G a subgroup,
L a G-module and ECL an H-stable subspace. Consider elements xe E and ye Hx
and assume that

(i) there is a decomposition LieG=Lie H®N such that NynE=0,

(ii) codimzzHy =codimgGy,

(iii) Gx is normal in y.

Then Sing(Gx, y)= Sing(HYX, y).
10.4. Now we can prove our main result on singularities in closures of orbits

(Theorems 0.3 and 8.4). Let 0,CO, be a minimal degeneration of index (p,q). By
Proposition9.1 there are numbers a, b, ¢, d with a<b and b—1=<c¢<d and a
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diagram ¢ such that

A=[a,d]+[b,c]+(p—D[a,c]+(q—1)[b,d] +6
v=pla,c]+q[b,d]+

(cf. proof of Proposition9.3; delet [b,c] if c=b—1). Using Proposition 9.3 our
second reduction result 10.2 implies that we may assume é =@ (cf. Remark 10.2). If
c=b it follows from the first reduction result 10.1 that

Sing(0,,0,)=Sing(0,,,0,.),
where A',v" are obtained from A,v by removing the c¢* column, i.e

A=[a,d—1]+[b,c—1]+(p—1)[a,c— 1J+(g—-1)[b,d—1]
v'=pla,c—1]+q[b,d—1].

Hence by induction we may suppose that c=b—1, i.e

A=[a,d]+(p—1)[a,b—1]+(q—1)[b,d]

v=pla,b—1]+q[b,d].

Finally if a<b—1 (or b<d) we can again apply Proposition 10.1, this time to the
a™ column (or the d'® column), ending up at the pair

A=[1,2]+(p— DLL, 11+(g—1)[2,2]

v=p[1,1]+4[2,2],

ie. 0,=0,,,.CM_ . 0 ,={0}. qed

min q,p°
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