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INTRODUCTION

One of the first results about representations of quivers was
Gabriel's characterization of the quivers of finite representation type and of
their indecomposable representations [G1,G2] : The underlying graph of
such a quiver is a union of Dynkin diagrams and the indecomposables are in
one-to-one correspondence with the positive roots of the assaciated semi-
simple Lie-algebra. Later Donovan-Freislich [DF] and independently
Nazarova IN] discovered analogous relations between tame quivers and ex-
tended Dynkin diagrams. Since all remaining quivers are wild, there was
little hope to get any further, except maybe in some special cases. Therefore
Kac's spectacular paper [K1], where he describes the dimension types of
all indecomposables of arbitrary quivers, came as a big surprise. In [K2]

and [K3] Kac improved and completed his first results.

These notes are meant to be a guide to and through Kac's articles.
In fact, most definitions and results are taken from his work. We reorganized
them to give - we believe- a direct approach which is easy to follow. We refer

to Kac's papers only for statements we do not prove completely.

Our point of view is of geometric nature -like in Kac's original
work- and we use methods from algebraic geometry and transformation groups.
The set of representations of a fixed dimension type is viewed as an algebraic
variety on which the algebraic group of base change operators acts. In fact,
it is a vectorspace with a linear group action. In this setting a number of

interesting questions arise very naturally, for example the following :
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What does the set of indecomposables look like ? How many
components does it have, and what is the number of parameters ? What is the
structure of the parameter space ? Is it always rational, and is there a
(canonical) normal form ? How can one understand degenerations and deforma-
tions by means of representation theory ? What is the interpretation of the
singularities in closures of isomorphism classes and of their tangent spaces ?
What is the generic decomposition of the dimension type, and when is the
generic representation indecomposable ? For which dimension types are there

only finitely many isomorphism classes ?

Some of these questions were already answered by Kac and will
be discussed in these notes too. But many of them are still open or have par-
tial answers only in some very special cases., Furthermore it should be an
important task to generalize Kac's results to quivers with relations. Again
the set of representations of such a quiver of fixed dimension type forms an
affine variety with the group of base change operators acting. But it will not
be a vectorspace in general : it may have singularities and may even be re-
ducible. Nevertheless the same questions as above can be asked here too,
but -as far as we know- no real effort has been made yet to understand this
more general situation from the geometric point of view. In particular, there
is no handy description of the dimension types of the indecomposables even
for finite or tame representation type. So once again there does not seem to

be much hope. ..

We are grateful to C. Cibils, J.M. Fontaine, D. Luna and
W. Messing for helpful discussions and suggestions, concerning

mostly chapter 5.
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1. QUIVERS AND REPRESENTATIONS

1.1. A guiver Q consists of a set QO of vertices, a set Q1 of
arrows and two maps t, h : Ql — QO assigning to an arrow ¢ its tail tep
and its head hg , respectively. We do not exclude loops nor multiple arrows ;

i.e., tp and hgp may coincide, and tp =ty , hp = hy does not imply o= .
We assume that QO and Q, are finite, and we set QO = {1,2,..,n} .

Examples .
a) 17—F 2 b) O (4)

3
7\
O
We fix an algebraically closed field k of arbitrary characteristic.

A representation V of Q (over k) is afamily V(), i=Ll,..,n of finite-
dimensional k-vector spaces together with a k-linear map V(g : V(th) — V(o)

for each arrow . The vector dim V = (dim V(1),...,dim V(n)) ¢ INn is the
dimension type of V . A morphism f :V — W is a family of k-linear maps
@) : v@) —wd), i = 1,...,n, such that W(p) o f(tep) = f(he) = V(g) for all
arrows o .

The direct sum VW of two representations V and W is
defined by (VEW)() = V)& W@) and (VeW)(y) = (V(é” W?)) . A represen-

. - CD

tation V is called indecomposable if V #0 and if V= Wle Wy implies
W1 =0 or W2 =0 .

1.2. Q is of finite representation type if Q has only finitely many

indecomposable representations, up to isomorphism. For instance, the quiver

Q=1—>2—>...—'ﬂ—l — N

is of finite representation type ;the indecomposables are the V. 's with
1]

i <j, which are defined by

k if i<p 5j
w0 |
’ 0 otherwise
1 if istp < hy <3
\A ].(co) = ’
. 0 otherwise.
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voeoSo. o %kt kb lo. %o, Dynkin_diagram. In this case, rank C = -1 gnd
1
: t t faelN :Caso§=§aem“;ca=0§=3aemn:q(a)=0$=m%
; ! for a unique 6Q e]Nu {0} .
If there exists a full embedding of the category of representations ¢) q is indefiniteif and only if Ca = 0 for o e]Nn -
of C:_) into the category of representations of Q , @Q is called wild. | @ = 0 and there exists an o ¢ ]Nn such that >0 and Co< 0

In this case, the problem of establishing a list of representatives of all inde-
Here o >0 meansthat o@i)>0 and ¢ =0 that a(@i) =20 for

composables is considered hopeless. Finally, if Q is neither of finite repre-
all i . For a proof, see [B}, [V].

sentation type nor wild, it is said to be tame.
Dynkin diagrams

1.3, Tits form Am,mzl 1—2— ... —m-1—m
The Tits form qQ , a quadratic form on Qn associated with Q , D ,mz24 1— 2— — me2 — m-1
pLtomLo L n i
is defined as follows : o
- E ,6<m=s8 4
(x x)=2 x2 2 X, X i I
q(x_,..., = . - .
1 oot cpEQll:t:phcp 1-2—-3-5—..—-m1—m
Obviously qQ only depends on the non-oriented graph Q underlying Q . Extended Lynkin diagrams
The Cartan matrix CQ describes the bilinear form (, ) associated E’Q
=== === Q A ,m=21 0
with qg : m —_— T~
) T l—-2— .. —m-1—m 11...1L
(x,y)Q =q(xty) - a(x) ~q@y) = X ch . ( )
o~ 0 - m-1
= . D ,m=x>4 2—3— .. —m-27 1122...
The components of CQ (cij) are : ! e 1~ m 0 (1122...2211)
’2—2#{loops ini} if i=j (I)
c,. = B
4
4 - ¢ {edges linking 1 and j} if 1#j. 6 ) (L2322
1—2—3—5—6
Examples. ! 4
|
g % CQ E“,{ 0—1—2~3—5—6— 17 (12342321)
2
= - 4
a C10) x] -2) ‘ . |
2. 2 2 -1 { A 1—2—-3~5—...—8 — 0 (124635432)
P) L X%y ()
c) 1 —»23 X - X X, (_i _(1)] 1.4. The following two fundamental results on representations of
LEMMA [K1,lemma 1.2] . Let Q bea connected quiver, q . quivers are due to Gabriel (Theorem 1) and Donovan-Freislich and Nazarova
f
its Tits form and C its Cartan matrix. (Theorem 2). Along with their generalizations to non algebraically closed fields,
4) q is positive definikeif and only if Q@ is a Dynkin diagram. they can also be found in [DR)

b) q is positive semidefinite if and only if Q is an extended Recall that for a Dynkin diagram Q the vectors q € N with




q() = 1 are precisely the positive roots of the corresponding semisimple

Lie algebra [B] . A similar statement holds for an extended Dynkin diagram
Q:the g¢ INn with q(a) =1 are the positive real roots and the
a € ]NéQ\{O} the positive imaginary roots of the corresponding infinite dimen-

sional Kac-Moody algebra [K4]

THEOREM 1 [G1, G 2] A connected quiver Q is of finite

representation type if and only if @ is a Dynkin diagram. The

map dim induces a bijection between isomorphism classes of

indecomposable representations of Q and positive roots of G .

THEOREM 2 [DF,N] . A connected quiver @ is tame if and

only if 6_2 is an extended Dvnkin diagram. For each indecompo-

sable V , dim V is a positive real or imaginary root of Q .

For each positive real root a of @ , there exists a unique in-

decomposable V (up to isomorphism) with dim V = ¢ . There

1 .
exists a cofinite subset EQ of TPk such that, for each posi-

tive imaginary root the isomorphism classes of indecom-

>\6Q 5
posables V with dim V = MQ are parametrized by E

Q-

2. THE REPRESENTATION SPACE OF A QUIVER

2.1. The representation space R(Q,a) of Q of dimension type

= (a(l),...,a(n)) € ]Nn is the set of representations
R(Qw = v : vy = &Y
Since V € R(Q,a) is determined by the maps V(p , we have
_ afte) | athy)y _
RQa) = ] Homk(k K ) = M
®EQ PEQ,

where M:p is the set of matrices of size o(hp)x a(ty) with entries in k .

, 1= 1,...,n$ .

We will consider R(Q,o) as an affine variety.

The algebraic group

GL@ = [] GL(@)
i=1

114

115

operates linearly (and regularly) on R(Q,q) :
-1
& V) = Shep” Vi * By,

for g = (gl,...,g ) €GL(g). The group GL(a) is the group of units of the
finite dimensional k-algebra M(g) = ]_l Mf(a@)) , where M(s) is the algebra
of sxs-matrices. The group k* diagonally embedded in GL(w) acts trivially,
and we obtain an induced operation of

G() = GL(a)/k*
on R(Q,a) .

Using the notion of dimension for algebraic varieties, we can
reinterpret the Tits form in the following way

qQ(a) =dim GL(0) -dim R(Q,q) .

2.2, By definition, the GL(x)-orbits in R(Q,a) are just the isomor-

phism classes of representations. The stabilizer

Cere’ = fg €GL@ : gV = v}

is the group Aut V of units in the endomorphism ring End V ¢ M(x) . Thus
it is connected.

V is indecomposable if End V is local; i.e., the nilpotent en-
domorphisms form an ideal of codimension 1 . Equivalently,
k* ¢ CGL(a)V = Aut V is a maximal torus, which means that every semi-
simple element of Aut V lies in k¥ .

More generally, decomposing a representation V into indecom-
posables corresponds to choosing a maximal torus in Aut V . Indeed, if T

is a maximal torus in Aut V , we can decompose

V) =iVX(i) with V. (i) = v eV@) ity = x@v for all te T{
for all i, where x: T—k* ranges over the characters of T . Then
V(cp)(VX(tfP)) & VX(hqo) for all arrows o , and we thus obtain a decomposition
V=gV . Since T operates on VX by scalar multiplication, k¥ c Aut VX
is aéla)é'mal torus, and therefore VX is indecomposable. Conversely, if
vV = VIEB . ® Vr with V1 indecomposable, the product of the maximal tori

k* c Aut V; is a maximal torus of AutV .



The map g+g-V induces an isomorphism

GL(q)/C O, »

GL@’ ~ %
where % is the orbit of V . This implies

dim Q, + dim End V = dim GL(q) .
Since k c EndV for any representation V , we get

dim OV < dim GL(@) -1 .

Using this inequality, Tits found a very nice argument, which
proves part of theorem 1 in 1.4 [G2] . Assume that Q is a connected quiver
of finite representative type and choose o ¢ ]Nn\{o} . Since any representation
of Q can be decomposed into a direct sum of indecomposables, R(Q,q)
contains only finitely many GL(a)-orbits. So one orbit must be dense and
thus have the same dimension as R(Q,qa) . Therefore

dim R(Q,a) £ dim GL(@)- 1
or equivalently

qQ(oc) =1.

Since all off-diagonal entries of C are non-positive, it follows that q_ is

Q

n —
positive definite on Zn and hence on ® . Thus @ is a Dynkin diagram

(lemma 1.3).

2.3. In this paragraph we study R(Q,a) , its decomposition into
sheets (2.4) and the indecomposables in each sheet for a particular example,
which should serve as motivation and illustration for the general definitions. The
notations used here are adapted to those introduced later.

We consider the wild quiver
—L)
Q=1_-Y _, 2
—X
and the dimension vector o = (2,1) . We have
dim R(Q,a) =6,
dim GL(@) =5,

qQ(X,Y) = X2+ yz_ 3XY s qQ(a) =-1 ’

(a-s (10))Q = 9 (av (01))Q SR AW

~

=

Vi
V)
X = R(Q,a) . Every representation V in X

The set C = 3V 8 det( ) = 0; is closed and irreducible in

() = X\C has a unique repre-

sentative of the form

Vi =10 , V(p=(1) , V= (g) ek’ .

Note that X(l)

is irreducible. It consists of indecomposable representations
with endomorphism ring k .

Every representation in C is isomorphic to precisely one of
the following

) Vi

(‘1’) with (@) € Pk ,

@0, Vi) =@, VX

i)Vl = @0, VW=(E0, Ve = () vwith @ €k o),

%) vwith @p € Pk,

v = @0, V=60, VK =(,
1
WMV@ =V =00, Vi =(),
0
V) Vi) = V() =00, V= ()

The representations of type i) are indecomposable with endomorphism ring

klt] /(tz) , all others are decomposable with endomorphism rings of dimension

2,3,3 and 5 for the types ii) , iii) , iv) and v), respectively. Denote by

X(d) the set of representations with d-dimensional endomorphism ring.
These sets can be described as follows :

2 _ Vi

X
V)

iV e X rank(\P) =1, veo # of,

x® - vex: rank(chﬁ) =1, v=ofu

fVex :v@ =vp =0, v#of,

X(3) has two disjoint irreducible components of dimension 2 and 3, res-
pectively, whereas X(z) and X(5) are irreducible. The set of indecomposa-
bles within each X(d) is closed. Indeed, V GX(Z) is indecomposable if and
only if V{poV(x) = 0 =V(§)-V(x) . But the set of all indecomposables is
neither open nor closed nor locally closed (= open N closed) in X . We

will see in 2.5 that these are general facts.

17



Remark. This example shows that R(Q,c) may contain a

dense open set of indecomposables without the set of all indecomposables being
open, This contradicts the statements in [K1,2.8], [K2, §4] which lead to

the definition of the "canonical decomposition of o' [K1, (2.24)].

2.4. We intrpduce some notions and results used later for the general
setting of an algebraic group G operating regularly on an irreducible variety
Z ef. [Kr2, 11.2)].

For any z € Z , the orbit G.z is open in Gz. In particular,
if z'€ G.z\G-z, then dim G-z'< dim G-z , or equivalently
dim CGz' > dim CGZ , Wwhere CGZ = 3ge G:g-z= z% .

The fixed point set Z8& = 32 €Z : gz = zi is closedin Z for
any g € G :identify Z& with the inverse image of the diagonal under the
regular map Z - ZxZ givenby z — (z,g-z) . Thus

ZG=3z€Z :gz=12z, vgeGg
is closed as well.

For s €¢IN the set

Z(S) 3zeZ:dim G-z=s$

is locally closed in Z, since by Chevalley's theorem ((EGA IV, §13], cf.

[Kr 2, I1.2.6]) the function z —~ dim CGz is upper semicontinuous. In par-

ticular, the union ZM3X  of all orbits of maximal dimension is open and

dense in Z . An irreducible component § of a Z is called a sheet of

(s)
Z for the action of G . All orbits in & are closed in & and have the

same dimension.

As an example, we consider the operation of G = GL(n) on
Z = M(n) by conjugation. With a matrix A having eigenvalues )\1,”, )\r and
Jordan blocks with eigenvalue xi of size p“z Pig 202 Pin 2 0 for

i=1,...,7r, we associate the partition p, = (p,...p ) of n, where
A 1 n ’

r

9. 8 )% Py
i1
invariant factor modules for the n-dimensional k[T] -module given by A .

This is the partition corresponding to the dimensions of the

It is easy to see that all matrices A yielding the same partition belong to
the same sheet of Z . In fact, we have the following result, which is due to

Dixmier, Peterson, Kraft (¢f. [Kr1), [P]).

p

PROPOSITION. The map A-—»pA induces a bijection between

sheets of M(n) and partitions of n ., The sheets are disjoint.

They are smooth, and each one contains exactly one nilpotent

conjugacy class and a dense open set of semisimple matrices,

The orbit space gp/GL{n} of the sheet corresponding to

p = (pl,...,pn) is isomorphic to k 1 3

2.5, Fix Q and set R(y) = R(Q,a) . Put

Rw'? = {v ¢R@ : dim End v = d}
for d € IN .

PROPOSITION. ) R(x'? is locally closed in R(y) ;

R(a)max is open and dense in R(a) .

b) R(OL)i(gfi = jVE R(a)(d) : Vindecomposablez is closed in B(a)(d).

d)
As a equence, R = ( i i
consequence, (a)ind dg R(oc)lnd is a constructible

set ; i.e., a finite union of locally closed sets.

Proof. a) follows from 2.4, since

R(a)(d) = R(on)a
with d = dim GL(a)-d .

For b) consider the closed subvariety

N = {(V,p) € K@ x M@ : p€ EndV , p nilpotent |
and the projection

p: N—R(@) .
The fiber p-l(V) of a representation V € R(a) consists of the nilpotent en-
domorphisms of V . Since the zero section R@ —N meets every irreduci-
ble component of every fiber, the function V.- dim p'l(V) is upper semi-
continuous (theorem of Chevalley). But V ¢ R(a) is indecomposable if and
only if dim p'l(V) 2 dim End V-1, and so

(d) @

R(OL)ind = ;V € R@) : dim p_l(V) zd—lz

is closed in R(a)(d) .

119
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max
Remark (Happel). If V = V'@ V" € R() , then

Extl(V ''V'") = 0 . Indeed, if there exists a non-split extension
0—V"'"—>W—>V'—0,

- ax
Then Oy < OW\O , which contradicts v € R(on)m .

We embed GL(x) as blocks along the diagonal into - M(N) ,
N = ZE af) . A mihisheet of GL(a) is an irreducible component of the in-
tersei:tlion 3 N GL(x) , where 8 1is a sheet of M(N) with respect to the
operation of GL(N) by conjugation. (2.4). Part a) of the following lemma
implies that each minisheet is contained in a sheet of GL(a) , where we con-

sider the action of GL(x) on itself by conjugation.

LEMMA. a) The functions g — dim C g and

GL(q)
g — dim R(cx,)g are constant on minisheets,

b) Each minisheet contains a dense set of semisimple elements.

Proof. a) GL(x) operates on Homk(ka‘(l),ka(])) by
= _1 = t-

gf=gofo g for g' €52 8) > and the function

g — dim Hom k@, k*08 s upper semicontinuous on GL(@) . On the other

hand, we have
M) =] Hom*®, )

i,j
0l
Mg =T] Hom *® , *0)8
i}
for g € GL(a) . The function g+—-dim M(N)g is constant on each sheet § of

and

M(N) and hence constant on minisheets. Therefore the functions

g — dim Hom(*®, K*0))8

R@?® = T Hom (ka(tw)’ka(hcp))g
PEQ

= 3units of 12_[1 (End ka(i))g;

are also constant on minisheets. But we have

and
CoL@?®
for g € GL(®) .
b) Let & be a sheet of M(N) and §' an irreducible component

of 8NGL(x) . Choose an element x ¢ 8 which does not lie in any other

irreducible component of 8 N GL(x) . Considering the component of x in
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each GL(o(i)) separately, we may suppose that x is in Jordan normal form.
As an easy consequence of the description of sheets in M(N) given in 2.4,
we find an invertible diagonal matrix d € & such that the line

L = {as + (1-0d : rek
is containedin 8 . Hence L' =L N GL(a) is an irreducible curve in
8 NGL(a) containing x and d . By the choice of x , L' -and thus d- is
contained in §' .

So we found one semisimple element in 8' . But the set of semi-
simple elements in § is open and dense (2.4), and therefore &' contains

a dense set of semisimples.

2.6. DEFINITION. Ve¢R(a) is stably indecomposable if there exists

an open neighborhood of V consisting of indecomposable repre-

sentations.

THEOREM. V is stably indecomposable if and only if End V=k .

Proof. If EndV =k, all representations in the dense open set
R(a)max have endomorphism ring k .

Conversely, suppose that V is indecomposable and has an auto-
morphism 8o ¢ k* . Choose an open neighborhood U of V. We want to
show that U contains a representation admitting a semisimple automorphism
outside of k* . Then V cannot be stably indecomposable. Set

S = {g €GLE : dim R@E = dim R(®)"°
and
E= | EndW cM()
weu
Since g0 ¢k*, S does not intersect k* . Moreover, S contains a dense
set of semisimple elements, since it is a union of minisheets (2.5). The
following lemma implies that ENS is open in S . Hence E contains semi-

simple elements, and the theorem follows.

LEMMA. Let G be an algebraic group operating linearly on a
vectorspace V , U ¢V an open subset, gy € G . Set

g =;g-‘—‘jG : ding= dimvgui ;

Then
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S‘=3geS : Ju € U with g-u=ui
is open in S .

Proof. Consider the vector bundle
p, ¢ SxV — S .
By the definition of S ,
L = 3(s,v) :8-V =V E
is a subbundle. Since the restriction o = pl/L : L—S is flat, the image
S' = YL NSxU)

is open.

2.7. Generic decomposition.

PROPOSITION. For o ¢IN" there exists a unigue decomposition

o = a1+...+0.s such that the set

R@ = gv €R@:V =V@..&V,, dim V. =q_, V. indecompo-
gen 1 i i i sables

contains an open and dense set of R(q) .

a = aptetag is called the generic decomposition of o , repre-

sentations in R(Ot)gglx = R(G)genﬂR(a)maX are called generic representations

of type o .

Remarks.

a) As example 2.3 shows, R(oL)gen is not necessarily open in R(q).
b) The generic decomposition depends on the orientation of Q :

choose Q= ,/ \ and a=, | - For the orientation / N\ , the

e 1 1 . - .
generic decomposition is + , whereas o 1is generically in-

1 1 0 0

decomposable for the orientation f X\

n
Proof. For each decomposition o = Bl+"'+Bt , Bi ¢ IN" , the
set of representations V such that V= qua-.@ Vt with dim Vi = Bi is
constructible, since it can be viewed as the image of GL(o) x R(BL) X ...xR(Bt)

under the map (g, Vl""’vt) g (VleB...GBVt) . Thus the set

R(@iB)eers 8) = 3V:V=vlea...eevt, dm V, =8, , ¥, indecombpl(;sia—
is constructible as well, and R(oa) is the disjoint union of the R(gy ; Bl" - Bt)’

taken over the finjte set of all distinct decompositions of « . So precisely
one of these sets, say R(a ; al,...,qs) , contains an open dense set of R(a) .

As a consequence of this and theorem 2.6 we obtain
COROLLARY. Let V = Vlr-‘a,—...a—Vs be generic, Vi indecompo-
sable. Then End Vi = k ,for all i,a_n_clExt'LW-,\i'] =0 for Iz § .

In particular, if the generic representation V is indecomposa-

ble, we have R(q)™> ¢ R@), ; and EndV =k .

3. THE FUNDAMENTAL SET

3.1. Denote by ¢ € the standard basis of Qn

1
The fundamental set FQ is defined by
FQ = 30.6 11\]‘1\{0} s (a, ei) <0, suppa connectedf .

Here (, ) is thebilinear form (, ). definedin 1.3, and supp ¢ denotes

Q

the full subquiver of Q whose vertices are {i :q(i)#0] .

The following result is an easy consequence of lemma 1. 3.

LEMMA 1. Let Q be connected.

a) FQ

b) FQ= INo\{0} for some & # 0 if and only if @ is an extended

= ¢ if and only if @ is a Dynkin diagram.

Dynkin diagram ; in this case &= 6Q .
c) If a) =0 for some o ¢ F_,
) I qQ( ) for some €Fy
supp o is an extended Dynkin diagram).

then supp o is tame (i.e.

LEMMA 2. Let o= +..+ €F, with r=22 and

Bl""’Br € an\{O] such that q(@) = q(Bl)+.u+q(Br) . Then suppa

is tame, and o is a multiple of ¢ .
- Supp o

Proof. We first consider the case r =2 and set Bl =y = Zciei,

B

9 =§ = Zdie:i , Q=1 aiei . We may suppose Q = supp a . By assumption

123



124

we have (y,8) = q(0)- q(y)- q(8) = 0 . An easy computation based on

a. =c.+d and c_.=c_. for the coefficients of the Cartan matrix C = (c,))
i i ij ji ij

of Q (1.3) yields

0<(y,6 =%c.cd

i,j B
c.d. c. c, 2
=2 Tca+37 e .(—1——]-) aa. .
i aji1]1 i i]ai 9.j ij
Since

= £ 11 j and ¢, ., <0 for all i#j,
(a,ej) Zi)cijaiso or all j a i #3

this inequality implies

c; o

e ;L if cl.# 0.

)
But Q is connected, and therefore o and vy are proportional, As a
consequence, we have (a,,ej) =0 for all j, hence Ca =0 . But then Q
is tame and ¢ € lNéQ (lemma 1. 3c)).

In case r>2, we have

@a =2 @B8) 2T B 8,) -

i i i i

This implies

(a_Bia Bi) 20

for some i , and we apply what we already proved to Y = Bi , 0= a—Bi 3

3.3. THEOREM. If ¢ lies in FQ and suppa is_not tame, then

the generic representation in R(a) is indecomposable,

Proof. Let o= o(1+...+or,s be the generic decomposition, and

suppose S 22 . Set

R'= R(c.l)x... X R(a.s)
and
G'= GL(ql)x...xGL(as) .

The image of
% : GL{o) x R"—R(a)
®V) —gV
is dense in R(x) by construction, and ¢ Is constant on the orbits of the

-1
free action of G' on GL(x)x R' given by h.(g,V)= gh ,h-V) . As a

consequence,

dim GL(g) + dim R'- dim G' > dim R(y) ,
which implies

10 = qla) +*afy)

in contradiction with lemma 2 of 3.2.

3.4, Number of parameters.

Let G be an algebraic group acting on avariety Z . If XcZ

is a G-stable subset, we write

X=UuX
with (s)

X(s) =3xeX: dime= sf .

DEFINITION. The number of parameters of X , is
WX) = max (dim X
s

-8) .

()

Here dim X denotes the dimension of the closure of X

(s) s)

Example. If the generic representation in R(a) is indecompo-
sable, we have

LRE™™) = dim R@) - (dm GL(-1) = 1- q()
(corollary 2.7).

THEOREM. If ¢ lies in F. and supp a is not tame, then

Q
HRE), ) = HERE™T) = 1-90) > uR@Y)

for all d>1 .
For the proof we need :

PROPOSITION. Let G acton Z , and suppose that G con-

tains a finite number of unipotent conjugacy classes. Then the

number of parameters of

X = 3z €Z: Gz umpol:enti~
satisfies
u
X) < max (dimz -dm G ) .
1 (X) e ( o)
u unipotent
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Remark. The Jordan normal form shows that GL(x) and also
G(a) contain only finitely many unipotent conjugacy classes. In fact, this

holds for any reductive group [L]

Proof. Consider the closed subvariety
L = 3(g,z) € GXZ : g-z = zf
of GxZ and the projections
% =pr, : L—-Z2 , ¢=pr1:L—>G 3
For z¢ Z , we have

¢ l(z) = Csz {z} .
If z lies in X , dim CGz =dim G-s, and therefore

(s)

-1
dim X =dim X, +dimG-s .
® ey " o
Consequently,
wX) = mg.x (dim X(S)—s) = -dim G + max dim cp-l(X
s

=_-dim G + dim cp'l(X) .

%

The definition of X implies cp_l(X) c q;_l(U) , where
U =3ueG g uunipotentg .
Since U consists of a finite number of conjugacy classes

c, =jemg™t: geal,

we obtain
-1
WX) £ -dim G +max dim § (Cy) .
u
But -1 g
Yy @® = {g}xZ° for ge G,
and thus

dim w_l(Cu) = dim Z"+dim C, = dim z" +dim G - dim G, -
This proves the proposition.

Proof of the theorem. Recall that V ¢ R(y) is indecomposable
if and only if C

G(G.)V is unipotent, where G(az) = GL(@)/k* (2.1). By 3.3,

max . . q
R(o) is contained in R(a)in q’

LB@ ™) =1 -q() . Set R = R)\R@)™*

and we already saw that

The lemma below implies that
dim R" - dim G() = dim R - dim GL@_ *+ 1 <1-q@)

for any unipotent element u#1 . For u=1 ,

dim R - dim G() < dimR - dim GL(+1 < 1 - q() .

Applying the proposition to R and G(o) , we find

= i (d)
u(Rmd) = max pR), J<1-q(@) .

d>1

LEMMA. X o belongs to FQ and supp o is not tame, then

dim GL (), ~ dim R(@)® > q(@)
for g€ GL()\k* .

Proof. The left hand side being constant on minisheets (2.5), we
may suppose that g is semisimple. Let ¢ = a1+...+as be the decomposition
obtained from the eigen space decomposition of g, and note that s > 2 since
g k¥ . Then we have

GL@), = T[ GL() and R@® = TTR(@)
and consequently (3.2)

S
dim GL() - dim R@®= 3 q(@) > q() .
g i=1 !

Remark. The theorem shows that for o ¢ F. with supp g not

tame, the number of parameters of indecomposables in theQmaximal sheet is

strictly bigger than in all other sheets. In fact, the proof given in chapter 5

that this is true whenever the generic representation is indecomposable, It is

an open question whether the maximal number of parameters of indecomposables
(d (d) 4.

always occurs in R(a)irld for the smallest number d with R(cL)ind

3.5. Remark. From the classification of indecomposables for extended

Dynkin diagrams (cf. [DR]) one obtains :if @ is tame R(o.)ind is contained
ax

in R(a)max. For o= MQ’ the number of parameters is ) for R(g,)m

and 1=1-gq() for R(a)ind; the generic decomposition is o = 6 +..+6 _ .

Q Q

Examples.

a) Q=1—= 2, o=(72).

max A 0
R(w) = GL(w)* 3V V@ =1, Vi) = (0 N ) s A # Ay €k
2
orV(¢)=(:; :\) ,)\EkEU
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A
GL()» §v V() =L, VE = (01 A ) M FEAEK
2
or v = (3 1), xek}.
R@™ = eL@- {v:ve =1, v = (3 J), rex] U

X1

o 5) » 1€k, Vv =1}.

GL@- {V: V@ =

o2y
b) Q= 1/'_)(\:3 , o= (1,2,1).
R@;q = OL@-S with S@ =(f), s =01 ,s60=1,

R@™™ = aL@-{v: ve = () , v =@ 0 , Voo = rek}
J R(a)ind ’

4. INDECOMPOSABLES AND ROOT SYSTEMS

4.1. Reflection functors

Let Q and o be as before. Fixa source i of Q , and sup-

pose
Z  aby =z al) .
tep=i
Consider the set
R'(Q0) ={VERQ) : [V@) Vi) - & Vhyp{ injective
tep=i
is contained in R'(Q,a) , and R(or.)j_nd = ¢

Obviously R(Q, if o does

@ing
not satisfy the required inequality, unless q = € -
The quiver Q* is obtained from Q by reversing all arrows with
tail i, and o* is givenby
\a(k) for k# i
k) =
fZ}_ aty) -ad) for k=i .
tep=i
We have

T o*ty = a'd) .
hep=i

Example.
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7N\

® —p® - b ——— @
i i

Q Q*

We set

R(@%0" = {VER@Q% o™ : [V@) : © V(9 —Va) surjective] .
heop=i

PROPOSITION. There exists a homeomorphism
R'(Q,0)/GL(0) —> RY(Q¥,a/GL(")

such that corresponding representations have isomorphic endomor-

(We use the quotient topology of the Zariski topology).

Proof. Set m = Y, ahy , W=k* , and
peQ
tp=1i
E= J] Hom@*'® @9 §=uGL(a(j)) :
PEQ )
tep#i

The required homeomorphism is obtained from the following diagram, in which

we use the isomorphisms

R'(Q,a)/GL(a(i)) —> Rx Gr
A%

LW
alf)
(Ve imiven, )

R"(Q*,a"/GL@*{@) — R x Gro o)W
v {(V(cp))h e ker[V(cp)]thi) ,

\

Here Gra (i)W denotes the Grassmann variety of o(l)-dimensional subspaces
of W,
R'(Q,q) R'(Q%,a%)
/ GL(a(i)) /GL(a*@))
R'(Q,®)/GL(a()) R'(Q", *)/GL@*@)
\ <
/G RxGr , W /G

/ a@d)

________ — R'(@Q*,a")/GL(@*)

R'(Q,a)/GL(x)



The claim about endomorphism rings follows from

Cax cLedy’ — %Y

B * o~ T
Cax GL(Q*(i))V CgVv
for V€ R(Q,a), V¥ € R(Q*,0*) , where ¥V and V* are the images in

R x Gra(i)W .

COROLLARY. The number of parameters as well as the number

of irreducible components of maximal dimension coihcide for

R(Q,a)i(g()i and R@", ou“)i(i)i , for all deIN .

Remarks. The isomorphism above is induced from the "reflection
functor" of Bernstein-Gel'fand-Ponomarev [BGP], which plays a crucial role
in the proof of the two theorems of chapter L. Independently it was introduced
by Sato and Kimura under the name of "Castling transform" [SK]

We could have started from a sink instead of a source, conside-
ring i€ Q"(‘)' first. An admissible vertex is a source or a sink. In particular,
no loop is attached at an admissible vertex. We will say that (Q* o™ is
obtained from (Q,a) by applying the 'reflection' Ri at the admissible vertex
i of Q.

It follows from the preceding proposition that all the results we
proved in chapter 3 for ¢ ¢ F

Q
of dimension type g , provided that (Q,@) is obtained from (Q, ) by applying

still hold for representations of a quiver @

a series of reflections Ril’Riz""’Ris to (Q,a), where iy is admissible

in Q, i2 is admissible after reversing the arrows with extremity i, and so on.

1

4.2, Real and imaginary roots.

With each vertex i of Q to which no loop is attached we asso-
ciate a reflection ri : Zn—- zn given by ri(oc) = a- (a, e:i)ei . The Weyl group
W = WQ is the subgroup of GL(zn) generated by the r; . It is contained in
the orthogonal group O(zn, qQ) .

A root of Q is a vector OLE]Nn such that R(Q,a) contains an
indecomposable representation. Roots have connected support. If for a root ¢

we have u(R(a)ind) 21, a iscalled imaginary, and real otherwise. So a
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root ¢ is real if and only if R(a)ind contains a finite number of orbits. We
will see as a consequence of the main theorem that in this case R(a)ind is
one single orbit. We denote by A = A(Q) , b = A(Q)re and Aim = A(Q)im
the sets of all roots, the real roots, and imaginary roots, respectively.

A simple root is a vector € » where i is a vertex in which
no loop is attached. Equivalently, & does not lie in F = F (3.1). The

Q

set of simple roots is denoted by II =[] Clearly [ c Are .

Q-
If Q is a Dynkin quiver, then W[ = A U-A is the corresponding
root system and W its Weyl group [B] .

4.3. Kac's theorem.

THEOREM. a) 4@ _= WI NN"; if o €4Q),, » then R@),

is one orbit.

b) 4@y, = WFy i If a€o@, , then uR@w, ) =1-q@.

The proof rests on the following crucial lemma, which we will

prove in chapter 5.

FUNDAMENTAL LEMMA. For ¢ Ean the number of isomor-

phism classes of indecomposables V with dim V = a as well

as "'L(R(Q’a)ind) only depend on the underlying graph Q of Q

(and not on the orientation).

Proof of the theorem. For L €W and ¢ € A\[ei] A lies

again in A . Indeed, by the fundamental lemma we may assume that i is
admissible, apply 4.1 and the fundamental lemma again, So A\W[l is stable
under W ; we want to show that it is contained in WF , where ¥ = F_. For

n Q
a € A\W[] we choose B € Wa with minimal height ht(g) = 20 B@{) . Then
i=1

ht(r.g) = ht(8)- (s, €;) 2 ht(p)

for all ri €W , which implies that B ¢ F . Note that 8, ej) <0 for ¢ ¢F.
J

We conclude that A c (W[ ﬂINn)U WF . Conversely, F and thus WF lies in

A\WIl by theorem 3.3 and remark 3.5.

In order to prove
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HRQ ), ) = 1-9@
for ¢ ¢ A(Q)im , we write g = ris...rils , p €F, and proceed by induction

on s, For s=0, the result follows from theorem 3.4 and remark 3.5. For

s>1, weset y= ri 5 B and choose an orientation Q' for which iS
s-1 1

is admissible. By Q' we denote the quiver obtained from Q' by reversing
the arrows with extremity is . Using the fundamental lemma and 4.1, we
find '

LRQ ), ) = HRQ, o) ) = HRQ", Y, ) = HRQ YD
which by the induction hypothesis is equal to

l-q(y) =1-q( .
An analogous argument for o € Wil NIN" finishes the proof,

The following proposition from [K1, prop.1.6] generalizes

theorems 1 and 2 of chapter 1.

PROPOSITION. Let Q be a connected quiver whose proper sub-

quivers are all either of finite or of tame type. Then
n —
M, = ja€N 1q@=1{,
— n . -
A, = fo e \{0} : a@ s of

Example
Q=1 —2
e
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5. PROOF OF THE FUNDAMENTAL LEMMA,

5.1. Starting from a quiver Q , any orientation on @ can be obtai-
ned in several steps by reversing one arrow at the time. For any arrow
y:i—-j of Q, we can write

RQo =RxH,
where

H= Hom @, %0
and

R = ]—T Hom(ka‘(w),ka(hq))) ]
oF ¥

Thus we have to compare the numbers of non-isomorphic indecomposables
in RxH and Rx H*, where
al) )

H* = Hom (k )

is the dual vector space of H. Unfortunately, there seems to be no way of
doing this directly over an arbitrary algebraically closed field k .

However, a result of Brauer shows that this comparison is pos-
sible over finite fields (5.5). Counting points of varieties in finite fields yields
the fundamental lemma for the algebraic closure IFp of IFp , for any prime
P (5.6). Finally, interpreting the representations in R(Q,a) over an algebrai-
cally closed field k as the k-valued points of a scheme over Z , one obtains
the lemma in characteristic zero (5.7). So this is one of the examples where
the only proof known for a result about fields of characteristic zero passes
via fields of positive characteristic.

For any field k -not necessarily algebraically closed- we denote
by R(Q,a)(k) the set of k-representations of Q of dimension type « :

R@a® = [T Hom 2,209

PEQ
Isomorphism classes of k-representations correspond to orbits of GL(a, k)

in R@Qa)k) .

5.2, Fix a prime number p and an algebraic closure k of IFp )
Recall that k contains precisely one field IF r Wwith p’ elements for r eN,

p
which is the fixed fieldin k of the r-th power of the Frobenius automorphism



x.-—xp of k . All fields K,L,E,F occuring up to section 5.6 are finite

subfields of k .

Let KcL bean extension of degree r , and consider the func-
tors
L& : RQ oK —RQo)
and, for a fixed choice of a k-basis L = K* s
|K: R(Q o)1) — R (Q,10)(K) .
Obviously (L®KV)|K is isomorphic to v' for any representation V in
R(Q,a)(K) . In combination with the theorem of Krull-Schmidt, this implies the

following.

LEMMA 1. If for two representations V, V2 in R(@Q,a)(K)

the representations L ®K Vl and L®K V2 are isomorphic in

R(Q,o)(L) , then V1 and V2 are isomorphic in R(Q,a)(K) .

Let I' be the Galois group of L over K , which is cyclic of
order r , and denote by LI the skew group algebra of I' over L : As a
L-(left) vector space, LI has the elements of I as a basis, and

XoyT = x0{y) oT
for x,y in L and o,1 in T . We let I operate on LI' by left multi-
plication. The fixed point set (LDT for this operation is obviously a K-left

and L-right vector space.
LEMMA 2. The map
o L®K(Lr)r—>L1“

given by the multiplication is an isomorphism of (left and right)

L-vector spaces.

Proof. Choosing a normal basis {o(x),c€l} for L over K,
one sees immediately that

dim (LD" =1 .
Thus the two L-vector spaces L®K(LI‘)F and LI have the same dimension
r . The theorem about the linear independence of distinct ¢ in I’ within
End_L shows that any L-linear form on ILI" which annihilates imp is

K
zero. Therefore L is surjective.

Remark. For any representation W in R(Q,q)(L) we have

the decomposition

Ire W= & w
ceTl
of LT ®LW as a direct sum of L-representations

W = {c&w: we W)

of dimension type « .

The representation W canbe described as follows : for any
vertex i of @, the L-vector space c’W(i) has the same underlying abelian
group as W(i) , but the product’ a.-w is given by c_l(a)w for ac¢ L and
w € c’W(i) ; for any arrow o, c’W(cp) equals W(p) . Obviously Ow |K is

isomorphic to W|K .

5.3. An indecomposable representation V in R(Q,a)(K) is called

absolutely indecomposable if k ®KV is indecomposable. Equivalently, L®K v
Is indecomposable for any extension L of K . An extension L of K is
called a splitting field for a representation V in R(Q, wK) if L& V is

K
a direct sum of absolutely indecomposable representations in R(Q,q)(L) .

LEMMA 1. Let V be indecomposablein R(Q,q)(K) . Then

L =End V/radEnd V is a splitting field for V . Moreover

r = [L:K] divides ¢ , and we have

Lg V=~ 1Tg W= & w |
o€l
where T = Gal(L: K), for some absolutely indecomposable re-

presentation W in R(Q,%)(L) , and the representations w

are pairwise non-isomorphic.

Proof. Since V is indecomposable, L = End V/rad End V is
a (finite) skew field and thus a field. We have
End(L@KV) a~ L®K EndV ,-

and also
rad End (L®KV) = I ®KradEnd v,

since K is perfect. So we find an isomorphism

End(L E =~ ~ 4
nd( ®KV)/rad nd(L®KV) L®KL L
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Therefore L ®K V can be decomposed in R(Q,a)(L) as a direct sum

L®KV = Wlee...@ Wr 5

and the Wi's are pairwise non-isomorphic and have L as endomorphism
algebra. As

End(E @ W;)/rad End(E & W) — E
for any extension field E of L, W; is absolutely indecomposable for

i=1,..,r . For any ¢ in T , the representations L@KV and
a _ G 5 G.
(L@KW) = Wl &..6 W,

are isomorphic. Using Krull-Schmidt, we find that {Wl,...,Wr} is one I-

orbit, up to isomorphism. This proves the lemma.

Let W bein R(Q,a)(L) . A subfield K c L. is a field of
definition for W if there is a representations V in R(Q,a)(K) such that W
is induced from V ;i.e., W is isomorphic to L ®K V.

[of

LEMMA 2. A subfield K of L such that W is isomorphic

to W for all 0 € '=Gal(L:K) is a field of definition for W .

Proof. Clearly we may suppose that the indecomposables in a
decomposition of W form one I'-orbit up to isomorphism. By our hypothesis,
LI‘@LW is isomorphic to Wr , and lemma 2 of 5.2 tells us that LT@LW is
induced from (LI)roz-L W in R(@Q,ro)(K) . Thus we have

r o~
v — L®KV1 @ ...@L@Kvt

for some indecomposable K-representations V ,...,V Our assumption on

1 t -’
the indecomposables occuring in W implies that L @KVi is isomorphic to
a5
some W = for all i . So we have found an integer s and an indecomposa-

ble K-representation V such that WS is induced from V .

Set F =EndV/rad EndV , and let E be a common extension

field of F and L in k. By lemmatl ,
= s
E
®KV — E ®LW
is a direct sum of pairwise non-isomorphic indecomposables, which implies

s=1 .
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COROLLARY. a) Any splitting field E for an indecomposable

representation V in R(Q,a)(K) contains L = End V/rad End V.

b) Any field of definition K for a representation W in

R(Q,a)(L) contains the fixed field LG , where

G ={o ecalL:Fy : ‘w = wi.

We call the field L of a) the minimal splitting field of V

and the field LG of b) the minimal field of definition of W .

Proof. a) For any splitting field E for V, we have a decom-
position

E®KV =UleB...e|3Ur .
where the Ui's are absolutely indecomposable and where r = [L:K], inde-
pendently of E by lemma 1. As a consequence of lemma 2, the Ui's form
one orbit up to iIsomorphism under Gal(E: K) , since V is indecomposable,

Thus r divides [E:K] , which implies L ¢ E .

b) If K is a field of definition for W , obviously the group
Gal(Li : K) is contained in G = Gal(L : LG) . Then [L:K] divides [L : LG] ,

which implies that [LG: IFp] divides [K:IFp] , and thus LG cK .

5.4. We sum up our results in form of the following lemma. For any
power g of p we set :

Vv(Q,a;q) = number of isomorphism classes of indecomposable
representations in R(Q,a)(IFq) .

\;a(Q,a;q) = number of isomorphism classes of absolutely inde-
composable representations in R(Q,a)(]Fq) .

p(Q,a;q) = number of isomorphism classes of absolutely inde-
composable representations in R(Q,q)(IF.) with mi-
nimal field of definition TF,_ g

LEMMA.

a) ViQasa = T p(Q,a;q"

IF cIF
q q

b) vQ ;9 =VviQa;q +2 % p(Q,%L ;qr) » where r ranges
T




over all integers greater than 1 for which % belongs to an 3

Proof. a) is clear, and b) says that the isomorphism classes
of indecomposables in R(Q, a)(K) with minimal splitting field Iqu are in
bijection with the isomorphism classes of Gal(Iqu: IFq) -orbits of indecompo-
sables in R(Q,%)(Iqu) with minimal field of definition Iqu )

5.5. The "fundamental lemma for finite fields".

Fix a finite field Fc k .

LEMMA. The number of isomorphism classes of representations

in R(Q,a)(F) is independent of the orientation of Q .

Proof. Using the notations of 5.1 , we have to show that GL(q, F)
has the same number of orbits in Rx H as in RxH¥*

V1""’Vr

. Choose representa-

tives from the (finitely many !) GL(o, F)-orbits in R . A

GL(a, F)-orbit in RxH or RxH* corresponds to the choice of a V, and

of a C Vj-orbit in H or u* , respectively.

GL(o, F)

Choose i in {1,...,r}, and set G =C Consider

CL@,F) %"

the @-vector space (DH of maps from H to €, and let G operate on

(DH by

& Db = (gl .
A fixed point of G in (EH is a map which is constant on G-orbits in H .
Thus the number of G-orbits in H equals the dimension of the vector space

«h®

of fixed points of G in (DH .

To prove our assertion, it suffices to exhibit a G-equivariant
isomorphism
H*
F : (PH = 5 .

The Fourier transform, which is defined as follows, does the trick :

1 2mi
(Fi) (@ = TH 2 it exp(=~ tr (e ()
he¢H
for f ¢ (I!H , @ E (DH* . Here |H| is the cardinality of H, and tr : F — IF
v p

the usual trace map. An easy computation shows that

1
(F (FD))h) = IE\ f(-h) .
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So F is an isomorphism, which is G-equivariant by definition.

Remark. The result that a finite group operating linearly on a
finite vector space V has the same number of orbits in V and V* seems

to be due to Brauer, but we have not been able to find a precise reference.

COROLLARY 1. The number of isomorphism classes of inde-

composable representations in R(Q,c)(F) is independent of the

orientation of Q .
n

Proof. Use induction on ht(@) = 7 a(i) and Krull-Schmidt.
i=1

COROLLARY 2. The numbers v*(Q,c;q) and p(Q,a;q) defi-

ned in 5.4 are independent of the orientation of @ for any

q=pS and any o .

Proof. This is clearly true for any q if ht(a) = 1 . Suppose
it is true for any q and any B with ht(8) < ht(z) . Then formula b) of
Lemma 5.4 implies that va(Q,a ;q) 1is independent of the orientation, as

v(Q,a;q) isbycorollary 1.

To prove the independence of p(Q,qa ; ps) of the orientation, we

keep ¢ fixed and apply induction on s . For s=1 , we have
a
P@,a;p) =V (Qa;p) .
The general case follows from formula a) of lemma 5.4, which says that

ViQaip) = p@a:p?) + T o@aip) .

t/s
t#s
5.6. The fundamental lemma for k= ]F—‘p
Let Y c kN be a locally closed subset which is stable under

the Frobenius automorphism o of kN . For any finite subfield F, of k,

q
set

N
IF) = NIF
Ul q) U q
This set may well be empty for small

q's . However, the famous result of

Lang and Weil about counting points of varieties in finite fields (ILW], see

also [Schl for an elementary approach) implies the cardinality of 'M(IFq)
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as follows :

behaves

PROPOSITION, If

di
PUE) S cq m Y

is the number of irreducible components of % of

U is stable under ¢, then

where c

maximal dimension.

means that either f(q) =g(q = 0 for
f@-gl@ _
f(q) g~

of indecomposable representations of Q

The symbol f(qQ) = g(Q)

q large or that f(q),g(q@) # 0 for q large and

(@)
ind
over k of dimension type o« and with d-dimensional endomorphism algebra
is a locally closed subset of kN , where N = 2, qe)aty) (2.5) . Let
d CPGQ]_

V be in R(Q,a,)i(nzj . All coefficients of all matrices V() , v € Q1 , lie

in some finite subfield K< k, and we may view V as an absolutely inde-

The set R(Q,a)

composable representation in R(Q,a)(K) with d-dimensional endomorphism

algebra over K . An easy computation shows that applying the Frobenius ¢

V(@)

fixed ylelds a representation isomorphic to %
(d)

CI)ind

may apply the preceding proposition. We find :

@ = u(d) + dim GL(q) -d
nd Ty =~ c@ 4 5

to all coefficients of all matrices while keepingthe bases of all V()

(5.2, remark), where ¢ is

viewed in Gal(K : IEI‘)) . Therefore R(Q, is stable under ¢, and we

# R(Q, )

and c(d) the number
(d)

ind °

where p(d) denotes the number of parameters (3.4)

of irreducible components of maximal dimension of R(Q,q)

For an absolutely indecomposable representation V in

R(Q,q) (]Fq) , we have

N
GL(@)-V N IFq = GL(a,IFq)-V
(d)
ind °’
closed irreducible o-stable subset of dimension GL(x)-d ,

its GL(a)-orbit is a locally

by lemma 1 of 5.2, If V lies in R(Q,q

and we find :

§CL@YV)E,) gim GL@)-d

d
As a consequence, the number of GL(a.,IFq)—orbits in R(Q, a)i(nZi(IFq)

140 I

141

behaves like c(d)qu(d) , and thus the number va(Q,a;q) of GL(q,IF )-
q
orbits In R(Q,cc)md(IFq) like chl , where p = mgx M(d) is the number of

parameters of R(Q’O“)ind (3.4) and c= L
nd)=np
a
But v (Qa;q) Iis independent of the orientation of Q (5.5) .

c(d) .

Therefore the number of parameters | and the number ¢ of irreducible
components of R(Q, O‘)ind with number of parameters | are independent as

well. Since for u= 0, c¢ is the number of orbits, this ends the proof.

Remark. As we may now apply Kac's theorem to IF , We see
" p

that p= 1-q(a) , independently of p . Moreover, there exists precisely one

irreducible component of R(Q, a)'nd
i

maximal, which means that ¢ =1 .

for which the number of parameters is

Indeed, this is true for ¢ € F

Q

remains true if we replace (Q,q) by (Q*, a¥) for some reflection at an

, it

admissible vertex (4.1), and it still holds when we change orientation, In
particular, if the generic representation of dimension type o 1is indecompo-
sable, the number 1-g(a) of parameters of R(a)max (corollary 2.7) is

strictly greater than the one of any other irreducible component of R<0“)1 q-
n

5.7. End of the proof.

In order to transfer our results in characteristic p to charac-

ZlX ] be
st
% ranges over

teristic zero, we have to define our varieties over % . Let

in the variables X
p;st

the arrows of Q and 1<s < alty) , 1 =t < athy , and set

the polynomial ring over % , where

R = RQ,a) = Spec ZIX ]

¥ ;st
Obviously R is affine N-space over Z with N = J, ate) oty . For
PEQ
any (commutative !) ring A, the A-valued points R(A) of R can be iden-

tified with

t
DQ HomA(Aa( CP)’ Aa(hCP)) ]
]

In particular, if k is an algebraically closed field, we have

Rk = R(Q,a) (k) .



Next we want to define a scheme whose k-valued points are

pairs (V,f) consisting of a representation V and an endomorphism f{ of

V . To this end, we set

m = Spec z[Yi ;jk] .

where i ranges over the points of Q and 1 <j,k < (i) . We denote by
L5k and by ch the
. For each o€ Q1 , the equation

Yi the a(i) xa(i)-matrix whose entries arethe Y
oty x alty) - matrix with entries ch.s ¢

XY -Y X =0
¢ by ho "o

yields aftp)athe) linear equations in

z[xcp; St] ®zZ[Yi ;jk] = z[xcp; st ’ Yi : jk]

Denote by g the ideal generated by these linear equations, and let

2 = Spec kX

CP;st’Yi;jk] /9

be the corresponding closed subscheme of R x 7 . Obviously we have for any

algebraically closed field

20 = {V,0 : VERQ,a)(k), f €End V} .
Consider the first projection

mT:2 —8
and define the subset

R(d) = 3x€ R : dim Tr_l(x) =dz.

Since sending x to (x,0) is a section for 7 and since all fibers of m

are irreducible, being affine spaces, R(d) is locally closed by Chevalley's
theorem [EGA IV, 13.1] . We endow ﬂ(d) with the structure of a reduced

scheme, Clearly we have
d d
v =2 a®
for any algebraically closed field k .

d
In order to define the ''subscheme of indecomposables in R( ) A

we use the characterization of 2.5. Let

dc ZIYi;jk]

be the ideal generated by the equations which express that Y1 is nilpotent,
or equivalently that Ygu) = 0, for all vertices i . Then

7 = Spec z[xcp;st,Y]_;jk] /3t g
is a closed subscheme of ) . Applying, Chevalley's theorem to the first
projection

m™: N—+R,
we see that the subset

g(t) = §x ER : dim n'_l(x) ztg
of R 1is closed for all t . Indeed, the zero section for m' meets all irre-
ducible components of each fiber. We give the intersection

L@ @ @Y

md=R

(d

which is closedin R ', the structure of a reduced scheme. For any alge-

@

braically closed field k , R, ,(k) consists of those representations with d-

ind
dimensional endomorphism algebra for which the nilpotent endomorphism form
a subvariety of dimension d-1 ; this is just R(Q, “)1(221“‘) .

Summing up, we have defined for each d a locally closed redu-
@ .(d) (d)

of R and aclosed reduced subscheme Yind of R

ced subscheme g
such that
(d)

d d
2% = Q0 P® and A0 - RQ0D w0

for any algebraically closed field k .

Let k be algebraically closed and choose an algebraic closure
ko within k of the prime subfield of k . For any d , the varieties
@ (@ . G
Rin d(k) and R’in d(ko) have the same dimension and the same number of
irreducible components of maximal dimension [EGA IV, 4.4] . Therefore the
fundamental lemma is true for k if it holds for ko . It remains to prove it

for an algebraic closure of @ .

Consider the canonical morphism
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3 8 R(.d)

- S z .
d ind pee

There is a non-empty open subset U4 of Z such that
dim £77(0) = dim £ '(p)
W it ) a P

for all p in Ud ((EGA IV, 9.2] . ¥ @ and IF. denote algebraic closures

(

of @ and E , then R (@ and g9 (E) are the varieties of §-valued
P 1

d)

nd ind

points of f:il(O) and IFp—valued points of fal(p) , respectively. We find
o @ = _ . (d)
dim Rmd(Q) dim ®,

ind (]Fp)

for all p in the open set U = ﬂUd and all d .
d

For any algebraically closed field k , the number of parameters

of R(Q,a)ind(k) is defined as
d .

uk) = mgx (dim R(Q, a)i(nzi (k) - dim GL({x) +d) (see 3.4).

As u(F)=1 -q(o) for all p , we conclude that p@) = l-q(@) , indepen-
p

dently of the orientation of @ .

Suppose 1l-gq(a)= 0. For any prime p there is a unique dp

such that R{Q,a}_(dg) (E‘p) is non-empty, and then it is a single GL(q, IE_IJ)-
in Ay =

orbit. As dp=d is constant on U, we see that R(Q, a)( :'(Q) is empty

ind
Rﬁ)d(@] is connected by [EGAIV, 9.7], and thus

consists of a single orbit. This ends the proof of the fundamental lemma for @.

for d' # d . Moreover,

Remark. Refining the last argument one can show that for any
algebraically closed field k the number 1 - q(a) of parameters is reached

d
for precisely one irreducible component of precisely one Ri(nzl(Q, a)k) .
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