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INTRODUCTION

One of the first results about representations of quivers $/as

Gabrielrs characterization of the quivers of finite representation iJæe and of

their indecomposable representations [G1,G2ì : Ttre underlying graph of

such a quiver is a union of Dynkin diagrams and the indæomposables are in
one-to-one correspondence with the positive roots of the asscciated semi-

simple Lie-algebra. Later Donovan-Freislich [DFl and independently

Nazarova [Nl discovered analogous relations between tame quivers and ex-

tended Dynkin diagrams. Since all remaining quivers are wild, there was

little hope to get any further, except maybe in some special cas¡es. Therefore

Kacts spectaßular paper [Kll , where he describes the dimension bypes of

all indecomposables of arbitrary quivers, came as a big surprise. In tKzl
and tKSl Kac Ímproved and completed his first results.

these notes are meant tobe a guide to and through Kacrs articles.

In fact, most definitions and results are taken from his work. \rye reorganized

them to give - we believe- a direct approach which is easy to follow. We refer
to Kacts papers only for statements we do not prove completely.

Orr point of view is of geometric nalure -:like in Kacrs orlginal

work- and we use methods from algebraic geometry and transformation groups.

The set of representations of a fixed dimension type is viewed as an algebraic

variety on which the algebraic group of base change operators acts. In fact,

it is a vectorspace with a linear group action. In this setting a number of

interesting questions arise verJf naturally, for example the following :
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1. ôUIVER AND ATIONS!\¡hat does the set of indecomposables look like ? How many

components does it have, and what is the number of parameters ? What is the

structure of the parameter spâce ? Is it always rational, and is there a

(canonical) normal form ? How can one understand degenerations and deforma-

tions by means of representation theory ? What is the interpretation of the

singularities in closrires of isomorphism classes and of their tangent spaces ?

What is the generic decomposition of the dimension tJ,pe, and when is the

generic representation indecomposable ? For which dimension types are there

only finitely many isomorphism classes ?

Some of these questions were already answered by Kac and will

be discussed in these notes too. But many of them are still open or have par-

tial answers only in some very special cases. Furthermore it should be an

important task to generalize Kacrs results to quivers with relations. Again

the set of representations of such a quiver of fixed dimension type forms an

affine variety with the group of base change operators acting. But it will not

be a vectorspace in general : it may have singularities and may even be re-

ducible. Nevertheless the same questions as above can be asked here too,

but -as far as we know- no real effort has been made yet to understand this

more general situation from the geometric point of view. In particular, there

is no handy description of the dimension types of the indecomposables even

for finite or tame representation type. So once again there does not seem to

be much hope. ..

We are grateful to C. Cibil-s, J.M. Fontaine, D. Luna and

vl. Messing for helpful discussions and suggestions, concerning
nostTg chapter 5-

1.1. A quiver e consists of a set e0 of vertices, a set e1 of
arrows and two maps t, h , Q1 * Qo assigning to an arrow g its tail tg
and its head hp , respectively. we do not excrude roops nor multiple arrov/s ;

i.e., tcp and hç maycoincide, and tp = tü, hg = hü does not imply ç= rf .

We assume that QO and 81 are finile, and we set eO = [f,2,...,nJ
Examples.

ù t7z o
,zt\

L*2

\4'e fix an al allv closed field k of arbitrary characteristic
A representation V of e (over k) is a family V(i) , i=1,...,n of finite_
dimensional k-vector spaces togelher with a k-linear map V(e) : V(th) * V(hcp)

for each arrow cp. The vector d¡B V = (dim V(l),...,dim V(n)) 6INn is the
dlmensiontweof V Amorphism f :V*W isafamilyof k_linearmaps
f(i) : V(i) * U'(i), i = 1,...,n, such rhat W(9)"f(rp) = f(hp) "V(q) for aII
arrows cp .

The direct sum VerW of two representations

b)
o

4
()

defined by

tation V

(Volv)(i) = v(i)o w(Ð and (vorÐ(cp) = (uf'
is called indecomposable if V I 0 and if V = WlO !V2

v
0

w(ç)

and W is

. A represen-

implies

¿,

Wf =0 or WZ=0

r.2. Q is of finiterepresentation tvpe if e has only finitely many

indecomposable representalions, up to isomorphism. For instance, the quiver

Q=i-2*...*n-l*n

is of finite representation type ; the indecomposables are the ur, j'" ì¡/ith

i < j , which are defined by

if i < ¿ s j

otherwise

if is tg < hp <j

otherwis e.

V. .(2) =r, :l

V. .(co) =I' J '

k

0

lt

0
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If there exists a full errbedding of the category of representations

of C.l ioto the category of representalions of Q , A is calted g!!!.

In this case, the problem of establishing a list of representatives of all inde-

composables is considered hopeless. Finally, if Q is neither of finite repre-

sentation bæe nor wild, it is said !o be tame.

1.3. Tits form

o -9-r. Ar.
t
i

.kåt90...
t
j

0
0

The lits fqf4 q^ , a quadratic form on f associated u/ith Q ,

is defined as follows :

q(xr,...r \, = å,.í - 
*?rr.tp*r,e 

.

frviously Se only depends on the non-oriented graph õ underlying A

A associatedlhe Cartan matrlx C"-

with 9e ,

(x,r),

lte components of

Examples.

a

describes the bilinear form ( , )

= q(x+y) - q(x) -q(y) = x Ce
T

v

) are

2 - 2 ifloops in iJ if i= ¡

-*fedgeslinking i and j] if tli

ce = ("ij

c ij

qe 
"e

2
a)

b)

c)

O'J -x1 (-2)

22xl+xZ-xlx21+2

r *zJ 2
*1 - *1*2

t2
t-r
t2
l-r

-1
2

-t
0

LEMMA. [K1, lemma t.2ì . Let Q be a connected quiver, q

its TiÈs form and C its Cartan matrix.

a¡ q is positlve definiþif and only if Q is a Dvnkin diasram.

b)s is positive s if and onlv if õ is an extended

113

DJ¡nkin diagram. In this case, rank C = n-1 and

foe wn: cq, <of = 
!-oe 

llf , co=of = fc,e INn:q(q) =01= NôA

for a unique O" e Urf ¡01 .

c) q is indefiniteif and only if Co, > O for q 6 [Vn implies

a = 0 and there exists an o € [.{n such that o> 0 and Co < 0

Here cr,>0 meansthat a,(i)>0 and o>0 that o(i)>0 for
all i For a proof, see [B] , [V) .

Dynkin diagrams

A - m> 1m' L-2-... -m-l -m
D*' m>4

Er,, 6 <m <8

Extended Dynldn diagrams

ã . m>1
m

L-2-...-rn-z - 
m--t

\m
4

I

I-2- 3--5 m-l -m

t_t_

0

-m-1 - m

ue

(11...11)

D
m l: r - B - ... - --r:l t snz, h24 22LL)

E

0
I

4
I

3

(tL2322L)
6

fr
7

ñ,

r- 2-

0- 1- 2 -

- ã- 6

4
I

3 -5-6-7 (L2342321)

4
It-2- 3-5 8-0 (L2t1636412)

1.4. The following two fundamental results on representations of

quivers are due to Gabriel (Theorem t) and Donovan-Freislich and Nazarova

(Theorem 2). Along rvith their generalizations to non algebraically closed fields,

they can also be found in tOnl

Recall that for a Dynkin diagram -Q the vectors o, € l.Ìn with
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q(o) = 1 are precisel! the positive roots of the corresponding semisimple

Lie algebra lgl A similar statement holds for an extended Dynkin diagram

Q : the q, € INn with q(o,) = 1 are the posltlve real roots and the

o e INôr\[0) the positive imaginarv roots of the corresponding infinite dimen-

sional Kac-Moody algebra tX¿l

THEOREM 1 [c1, G 2] A connected quiver a is of finite

representation twe if and onlv if A is a Dynkin diagram. The

map dim inducès a biÍection between isomorphism classes of

indecomoosable esenlations of a and nositi ve roots of a

THEOREM 2 [DF, Nl A connected quiver a is tame if and

onlv if Q is an extended Dvnkin dieøram For each indecompo-

sable V , dim V is a oositive real imasinarv root of a
For each positive real root o. of Q , there exists a unique in-
decomposable V (up to isomorphism) with È!q V = a T_gI_e

operates linearly (and regularly) on R(e,c) :

(s.v)(ç) = Bhcp" v(p).crcpL

for g = (gl,...,eo) € GL(a). The group cf,(a,) is the group of units of the
finite dimensional k-algebra M(o) = fi t1o1r¡¡ , where M(s) is the argebra
of s¡s-matrices. The group r.* ¿iaJonlarry embedded in GL(q.) acts trivially,
and we obtain an induced operation of

G(q.) = GL(o)/t*
on R(Q, q)

using the notion of dimension for algebraic varieties, we can
reinterpret the Tits form in the following way

an(ø) = dim GL(ø) -dim R(Q,s) .

2.2. By definition, the Gl(q.)-orbits in R(e,q.) are just the isomor-
phism classes of representations. The stabilizer

Ccr_(*)V = l* .GL(o) : C.V = vl

is the group Aut v of units in the endomorphism ring End v c M(o,) Thus
it is connected.

v is indecomposabre if End v is local i i.ê., the nilpo¿ent en-
domorphisms form an ideal of codimension 1 Equivalentl¡,,

Oo = "a"(o)V 
= Aut V is a maximal torus, which means that every semi-

simple element of Aut V lies in k*
More generarly, decomposing a representation v into indecom-

posables corresponds to choosing a maximal torus in Aut v Indeed, if T
is a maximal torus in Aut V , we can decompose

v(i) =lVX(i) wfth V*(i) = lu aV(i):r.v = X(r)v for all r€ Tf
for all i , where X: T*k* ranges over the characters of T Then

v(9)ff.(tp)) e \,(hv) for all arrows cp, and we thus obtain a decomposition¡,x
V = @ V* . since T operates on vx bt scalar murtiplication, k* e Aut v*
is a íùaximal torus, and therefore vx is indecomposable. conversely, if
V = VrO ... @ V" with V_ indecomposable, the product of lhe maximal tori
k* c Aut V- is a maximal torus of Aut V

E^ 9! IPlk such that, for each posi-q-

q. = (o.(1),...,o(n)) € l.ln is the set of representalions

R(Q,d = lu, v(i¡= ¡o(i), i=1,...,nf
Since V € R(Q,o) is determined by the maps V(g) , we have

R(e,o) = l] uo-o(ro(te),ko(ho) = TJ M^^ ,

ç€Qr ç€Qr Y

where M* is the set of matrices of size s(hp)x o(tg)
We will consider R(Q,q.) as an affine variety.

The algebraic group
n

GL(a¡ = ll cr,1ø1i¡¡
i=1

exists a c subset

tive imaginarv root Iô^ , the isomorphism classes of indecom-
v

posables V with {!¡n V = Iô^ aJe__æte!s_9!I¡eqq iy E^
'-¿ tC

2. "THE REPRESENTATTON SPACE OF A ELIVER

2.1. The on space R(Q,ø) of Q of dimension type

with entries in k
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The map g*g.V induces an isomorphism

Gl(d/c"",o)v * ov ,

where Q, is the orbit of V . This implies

d* Ag + dim End V = dim GL(o)

Since k s EndV for any representation V , we get

dim Or, < dim GL(q.) - I

Using this inequality, Tits found a very nice argument, which

proves part of theorem 1 in 1.4 [G2]. A.ssume that Q is a connected quiver

of finite representative type and choose o e Wn¡¡Oi . Since any representation

of A can be decomposed into a direct sum of indecomposables, R(Q,q)

contains only finitely many Gl(ø)-orbits. So one orbit must be dense and

thus have the same dimension as R(Q,o) Therefore

dim R(Q,o) < dim CL(o)- I
or equivalently

cQ(q) > 1 '
Since all off-diagonal entries of Ca are non-positive, it foilows that qe is

positive definib onZA and hence on Qn . Thus e is a Dynkin diagram

(lemm¿ 1.3).

2.3. In this paragraph we study R(Q,q,) , its decomposition into

sheets (2.4) and the indecomposables in each sheet for a particular example,

which should serve asmotivation and illustration for the general definitions. The

notations used here are adapted to those introduced later.

We consider the wild quiver

cp-
e=i**z

and the dimension vector o" = (2,1) We have

dim R(Q,¿)=6,

dim GL(q,) = 5,
qe(x,y) = *2* y2- B*y , ea(o) = -1 ,

(o, (10))^ = I , (o, (01))^ = -4 .w 'Q

rhe ser c = lv ' u", (ll[ì)
X = R(Q,q,) Every representation V

sentative of the form

v(ç) = (10) , v(r¡) = (0 1) , v(Ð = tfit e r.2 .

Note that x(1) ¡, irreducible. It consists of indecomposable representations

with endomorphism ring k

Every representation in C is isomorphic to precisely one of

the following

= Of is closed and irreducibte in

in x(1) = x\c has a unique repre-

v(Ð = (1)i) v(ç) = (c, 0) , v(ù) = (p 0) ,

ii) v(ç) = (o. o) , v(ü) = (9 o) ,

with

with

withiii)v(p) = (o 0¡ , v(llJ) = (p 0) , v(x) = (3)

iv) v(ç) = v(ù) = (0 0) , v(Ð = ,å, ,

v) v(p) = v(llJ) = (0 0) , v(x) = t3l .

lhe representations of type i) are indecomposable with endomorphism ring,
kl,tl /$') , all others are decomposable \¡r'ith endomorphism rings of dlmension

2,3,3 and 5 for the types ii) , iü) , iv) and v),respectively. Denote by

X(d) the set of representations with d-dimensional endomorphism ring.

These sets can be described as follows :

v(Ð = (å)

v(Ð I 01,

(o. 9) € IPlk ,

(o F) € r.zvoJ,

(o g) € IPlk ,

x(2)=fvex

x(3)=fvex

fv e x

x(5) _ tol .

**(]1fi) = r ,

""'n(llïì) = ' ,

v(p) =v({r) = 0,

x)v 0

lov(Ð

U

,
X(3) has two disjoint irreducible components of dimension 2 and B , res-
pectivel¡ whereas x(2) rod X(5) are irreducibte. The set of indecomposâ-

bles within each x(d) is closed. Indeed, v € x(2) Ís indecomposable if and

onlyif V(p).V(Ð = 0 =V(r]l)"V(Ð . But theset of all indecomposables is

neither open nor closed nor locally closed (= open 0 closed) in X . We

will see in 2.5 that these are general facts.i

I

t
I
I
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Remark. This example shows that R(Q,cr,) may contain a

dense open set of indecomposables without the set of all indecomposables being

open. T-his contradicts the statements in [Kt, Z. gl , [K2, $4] wtrich lead to

the definition of the 'banonÍcal decomposition of o " [KL, (2.24)'l .

2,4. We introduce some notions and results used later for the general

setting of an algebraic group G operating regularly on an irreducible variety

Z (cf . IKr 2, II.Ð) .

For any z e. Z , the orbit G.z is open in E. tn particular,

if z? € G=\G.2, then dim G.zr< dim G.z , or equivalently

dim C"zr > dim COz, where C"z = f S€ G: g.z= zl .

The fixed point set Ze = lz €.2 : g.z = zf is closedin Z f.or

any S € G : identify Zg with the inverse image of the diagonal under the

regular map Z*ZyZ g¡enby z *(2,g.z) Thus

ta=1"Çz:g.z=z,vc€cl
is closed as well.

For s € IN the set

Z, . = l, <Z: dim G., = "f(s) (

is locally closed in Z, since by Chevalleyrs theorem ([EGA W, $t3l , cf.

[Kt 2, IÍ,2.6] ) the function z + dim COz is upper semicontinuous. In par-

ticular, the union Zmax of all orbits of maximal dimension is open and

dense in Z An irreduciblecomponent I of a ,þ) is called a sheetof

Z Í.or the action of G . A.ll orbits in S are closed in €i and have the

same dimension.

A.s an example, we consider the operation of G = GL(n) on

Z = M(n) by conjugation. With a matrix A. having eigenvalues lI,-., trr and

Jordan blocks with eigenvalue tri of size pitr piZ =...t p.nr 0 for

i = 1,...,r , we associâte the partition pA = (pl,..,pn) of n, where
r

O¡ = 
,1, 9¡, . This is the partition corresponding to the dimensions of the

invarÍañt factor modules for the n-dimensional k[Tl -module given by A .

It is easy to see that all matrices A yielding the same partition belong to

the same sheet of Z ^ In fact, we have the following result, which is due lo

Dixmier, Peterson, Kraft (cf. [Kr 1ì , [Pì ).

\
pRoposITIoN. The map A*pA induces a biiection between

sheets of M(n) and partitions of n . The sheets are disioint.

They are smooth, and each one contains exaclLy__one_nilpglen!

for d€IN

ô^hllrõonrt class an¿l q denqc n-a. set of s ihñl ê hø t?i^ es

T'he orbit spac

p=(pr .' Po)

2.5. Fix Q and set R(d = R(Q,o) . Put

R(ol(d) = lt.R(ø) : dim Endv = df

PROPOSITION. a) n1¿(d) is locailv closed rn R(a)

R(ø)t"" is open and dense in R(q.)
(d)

ind
b) R(q) v € R(ø)

(d)
Vindecomposable I is closed in R(ol(d).

As a consequence, R(q).-, = fl^ R(.rl:!
set ; i.e., a finite union of locatly"iå3"0 å"r..

is a constructible

Proof. a) follows from 2.4, since

ntq,fd) = Rtql¡

with ã= dim GL(o)-d

I'or b) consider the closed subvariety

¡u = lCu, p) € R(o-)x M(q,) : p( EndV, p nilpotentf
and the projection

p : N *R(o,)

The fiber p-lff) of a representation v € R(o) consists of the nilpotent en-

domorphisms of V Since the zero section R(o) *N meets every irreduci_
ble component of every fiber, the function v*dim p-l(v) is upper semi-
continuous (theorem of chevalley). But v ( R(o) is indecomposable if and

only if dim p-l(V) > dim End V- 1 , and so

R(øllI = lu . n(o)(d) , di* p-l(v) 
= d-il

is closed in R(o)(d)

)
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Remark (Happel). If V = Vr4l Vrt € R(q)ma" , then
1

Ext-(Vt,V") = 0 . Indeed, if there exists a non-split extension

0 +ytt +!f +$?+Q ,

lhen q e ç\O*, which contradicts V € B(q,)max .

nt
. We embed GL(o) as blocks along the diagonal into- M(N) ,

o(i) A minisheet of GL(o,) is an irreducible component of the in-
i=1

tersection I n GL(q,) , where g is a sheet of M(N) with respect to the

operation of GL(N) by conjugation . (2.4). Part a) of the following lemma

lmplles that each minisheet is contained in a sheet of GL(q,) , where we con-

sider the action of GL(a) on itself by conjugation.

LEMMA. a) The functions g * dim C^- , .e aDd

g * dim R(a)g "r" "oo"t"ot 
oo -ioi"rr"IIJT)

b) Each minisheet contafns a dense set of semisimple elements.

Proof. a) GL(o) operates on Homo(kqG),no(i), by

g"f = Bi. t. t;t for g = (g1,..., Bo) , and the function

g *di; Hom6o(i),¡o0)rg is upper semicontinuous on GL(q,) . On the other

hand, we have

M(N)

and
M(N)g

TI'l

TIirj

Homlko(i), ¡q(j),

Homlkq(i), kq6))c

for g 6 GL(q) . The function g*dim M(N)g is constant on each sheet S of

M(N) and hence constant on minisheets. Therefore the functions

g +dfm HoorlkqG),kq0))g a¡e also constant on minisheets. But we have

R(ds = IT Hom(ko(tq), kq(he))c

and ç€Qr

ccr,(o)e = lunits "t fr, 
tnra kq0))cf

for g € GL(o)

b) Let I be a sheet of M(N) and gr an irreducible component

of S fì GL(q.) . Choose an element x € gt which does not lie in any other

irreducible component of S 0 GL(o) Considering the component of x Ín
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each GL(q,(Ð) separately, we may suppose that x is in Jordan normal form
As an easy consequence of the description of sheets in M(N) given in 2.4,
we find an invertible diagonal matr¡x d € g such that the line

I=fls+(t-t)d:Àekl
is contained in I . Hence Lt = L 0 GL(q) is an irreducible curve in
gnGl.(o) containing x and d. Bû¡thechoiceof x, Lr -andthusd- is
contained in 8r

so we found one semisimpre element in gr But the set of semi-
simple elements in g is open and dense (2.4), and therefore Sr contains
a dense set of semisimples.

2.6. DEFINITTON. V€R(q) is stablv indecomposable if there exists

an open neighborhood of V consisting of indecomposable repre-
sentafions.

THEOAEM. V is stablv indec if and onlv if End V= k

Proof. If End V = k , all representations in the dense open set
R(q)*a* have endomorphism ring k .

and

Conversely, suppose that V is indecomposable and has an auto_

Sg I k* . Choose an open neighborhood U of V . We $,ant to

u contains a representation admitting a seNnisimple automorphism

k* . Then V cannot be stably indecomposable. Set

S = le €GL(o¡ : dim R(o¡g = di^ R(q)gof

E= u EndwEM(q)
w€u

since gg d k* , s does not intersect k* . Moreover, s contains a dense

set of semisimple elements, since it is a union of minisheets (2.5). Tbe

following lemma tmplies that Ens is open in s . Hence E contains semi-
simple elements, and the theorem follows.

LEMMA. Let G be an algebraic soup operatinq linearlv on a
vectorspace V, UeV a$opensubset, Bg€G. Set

. = le€G : din rË= ai*vsof .

Then

morphism

show that

ot¡tside of
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{
S' = le€S : 3u€U with g'u =uf
is open in S

Proof. Consider the veclor bundle

Pr: SxV *S

By the definilion of S ,

r,=fts,v):s.u =ul
is a subbundle. Since the restriction e = Vr/L 't

S, = qL0SxU)

is open.

2.7

contains an open and dense set of R (o) .

sentations in

of twe o. .

_(B(o;F,,..., 9.) = f V:V = V,O...@Y . dim V. = ß. V.r L . I I r' I indecomposa-
tre Iis constructible as wel[, and R(o) is lhe disjoint union of the

taken over the finite set of all distinct decompositions of q. .

3.L. Denote by el,...,€n
The fr¡ldamen!4_set

r, = lo€ rln\[oJ :

R(s ; 01,. .., 9t),

So precisely

R(q)

9r = Y = tciei,
By assumption

one of these sets, say R(oic[1,...ros), contains anopen dense set of

As a consequence of this and theorem 2.6 we obtain

L * S is flat, the image
indecompo-

for il j

In particular, if the generic representation V is indecomposa-

ble, we have R(q.)** e R(o).--, 4qd End V = k

3. THE FUNDAMENTAL SET

the standard basis of Qt

% is defined by

(q.,e.) <0 , suppo connectedl

Here ( , ) is thebilinear form ( , )e definedin 1.8, and suppq denotes

the full subquiver of Q whose vertices are [i : ø(i)10) .

The following result is an easy consequence of lemma 1.8.

LEMMA 1. Let Q be connected

a) Fr=Ø if and only if a is a Dvnkin diasram.

b) Fe = [\ô\[0 j for some ö I 0 if and onlv if Q is an extended

Dvnkin diagram I in this case ô = ô -

c) 4 qa(o) = 0 for some o € 
"e , 

then supp o, is tame (i. e

"rpp 
q, is an extended Dynkin diagram).

COROLLARY. Let V = Vl6...OVs be seneric, V,

sable. Then End V. = k , for aII i, and Extr1v.. V) = 0
I - r- J

Generic decomposition.

PROPOSITION. For s, €INn there exists a unique decomposition

q, = q+...+q.s such that the set

*@uun=lt.R(o):v =vr@...e V" , dimVi=oi,u, tro"lliìåj-

o = q.,+...+q,_ is called the generic decomposition of c , repre--'ts
R(o)äneîx = R(ø)r"o0R(q)-"" are called seneriç representations

Remarks.

a) As example 2.3 shows, R(q)gen is not necessarily open in R(6)

b) The generic decomposition depends on the orientation of Q :

choose 0= ,/ \ and q.= . For the orientation ,/ \ , the
2

11
genericdecompositionis 1 

t 
I+0 

t 
o,whereas q. isgenericalLyin-

decomposable for the orientation ¿.}.
Proof. For each decomposition û. = pt*...*Ft , 9, € Nt , th"

set of representations V such that V = Vro-.el Vt with 1lim Vi = 9i is

constructible, since it can be viewed as the image of GL(cr) x R(PI) x...xn(Fy'

under the map (g,Vr,...,Vr) r*g'(VrO...OVr). Thus the set

LEMMA.2. Let q. = p,+...+p_ € F^ wilh r >2 and

81,..., B" . ^\ol "u"ï' 
,n", i,t T o*¡*.-*n,u")Tl*e 

"oooo
is tame, and c is a multiple of ô

Proof. We first consider the case r = 2 and set

FZ = ô = Xdrer, o = I "i.i . We may suppose Q = supp o,
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we have (y, ô) = q(o) - q(y) - q(ô) > 0 . An easy computaHon based on

a, = cr+d, *U 
"rj = c¡, for the coefficienbs of the Cartan matrix C = (c'j)

of A (1.3) yields

0 s (y, 0) = F. "rj"¡dj
c.d.

=Ð r tuj tir "ri',**å"r,(i-+f a.a.rJ
Since

thie lnequalily fmplies

c. c.
l_ l

a- a.rl

(s, e.) =Ð c..a- s 0 for allJ i IJr jandc ij r0 forall ílr,

l0

But A is connected, and therefore a and y are proportional. As a

consequence, we have (o, er) = 0 for all
is tame and q € lNôe (eurma 1.Bc)).

In case r> 2 , we have

Tbis implies 

(o' o) = 
! 

(a' o') > u (Pl' 9i) '

(q-pi, pi) > o

for some I , and we applyv¡hat we alreadyproved to y = gi , ô = s-gi

3.3. THEOREM. If a, lies in Fq and suppo is aot tame, !@
the generic representation in R(o) is indecomposable.

Proof. Let q, = oL*...*o" be the generic decomposition, and

suppose s>2 Set

R'= R(ar)x...xR(o,s)
and

G' = Gl,(or)x...xGL(o") .

The image of

9: GL(q)¡ Rr+R(q)
(g,V) +g'V

fs dense ln R(q) by construction, and g is constant on the orbits of ühe

free actlon of Gt on GL(o)¡ R' given by h.(g,V)= (gh-l,h.V) . As a

ifc ij

j , hence Cq = 0 But then A
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corurequence,

dim GL(q) + dim Rr - dim G' > dim R(q,) ,

which implies

Q(o) > n1or, +...+q(os) ,

iu contradiction with lemma Z of. g.Z.

3.4. Number of parameters.

Let c be an algebraic group acHng on a variety Z . Il. X c Z
is a Crstable subset, we write

X=UX.
wfth - (s)

*(") = fxe x: dim o*= "f '

DEFINITION. The of of x, Þ
u(Ð = max(dim X -s)

s

Here dim X

(s)

(s) denotes the dimension of the closure of
in Z.

Exampþ. If the generic representalion in R(q,)

sable, we have

g(R(q)mu) = dim R(o) - (dim GL(a)-l) = 1- q(q,)

(corollary 2.7).

number of parameters of

x '' lt€.Z : G, unipoteftl

satlsfies

u(Ð r q34 (dim 2u-dim co)
u un¡potent

x
(s)

is indecompo-

THEOREM. I ø lles in F, and supp q, is not tame, !@
p(R(q,)inJ = p(R(q)mT = 1-s(o) > u@toli$l

for all d> 1

For the proof we need :

PROPOSITION. Let G act on Z , and suppose that G ggq_

fains a number of coniusâcv classes- Then the
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Remark. The Jordan normal form shows that GL(ø) and also

G(o) contain only finitely many unipotent conjugacy classes. In fact, this

holds for any reductive group tl,l

Proof. Consider the closed subvariety

L= l(c,z)€Gxz:g'z=zl
of GxZ and the projections

g=prz:L-Z , ü=prr:L*G
For zQ.Z , we have

f1(") = c'zx {zl .

If z liestn *(.), dimCOz=dimG-s, andtherefore

otrn.l 1{x1.¡) 
= dim *(r) * **G -s

Consequently,

u(Ð = max(dim 
"(")-.) 

= -dim c +mgx di- .t-l{X,",)

= -dim c + dim ç 
ttrO 

.

The definition of X implies Cltn = r¡-l(u) , where

U =lo€G: uunipotentf .

Since U consists of a finite number of conjugacy classes

co= fs,rs-l : c€ cl,
we obtain

-1p(Ð < -dim G +max dim ù (cu)
u

But

and thus
ü-1(e) = l.eJ xze for g€ c,
om q-l{co) =dim zu+dim co= dim Zu+dim G - dim Go

Ttris proves the proposition.

Proof of the theorem. Recall that V € R(o) is indecomposable

if and only ü Ca,.,rV is unipotent, where G(q) = GL(q.)/k* (2.1 ). By B.B,

R(d*"* is contaiiáa in R(o)roo , and we already saw that

U(R(o)max) =1-q(o) Set ñ = R(q)\$,(ø)mt" . Th" lemma below implies that

dim ñu - dim G(o,)o = dim Éu - dim GL(ø)o * r . 1- q(ø)

foranyunipotentelement uIn For ü=I ,

dim R--dim G(ø) <dimR - dim GL(o,)+l< 1-q(q,) .
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Applying the proposition to R and G(q) , we find

u(Find) = 3ï urnorjllr < l-q(o)

LEMMA. If o, belonss to

dim GL(o,)r- dim R(q.)g > q(q,)

for g€ cl-(q,)\k* .

% and supp o, is not tame, then

Proof. The lefthand sidebeing constant on minisheets (2.S), we

may suppose thai g is semisimple. Let o = q1+...+(s be the decomposition

obtained from the eigen space decomposition of g , and note that s > 2 since
gd. k" Then we have

GL(o), = TT cL(%) and R(a¡s = TTRtoil
and consequently (3.2)

dim GL(o)o- dim R(q,)g = Ë et".rl > q(q,)
Ë i=1

Remark. Ttre theorem shows tha! for o € 
"e 

with supp o not

tame, the number of parameters of indecomposables in the maximal sheet is
strlctly bigger than in all other sheets. In fact, the proof given in chapter 5

that this is true whenever the generic representation is indecomposable. It is
an open question whether the maximal number of parameters of indecomposables

always occurs in n1"¡1d| for rhe sma[esr number d wth n<"1,(f,l * ø .

3.5. Remark. From ¿he classification of indecomposables for extended

Dynkin diagrams (cf. [DRl ) one obtains : if e is tame, R(o)ind is contained

in B(q)*"* . For q, - ).ôe , the number of parameters is ¡. for R(ø)*u
and 1= 1- q(o) for R(o)iod ; the generic decomposition is o = ôr+...+ôa.

Examples.

a) Q=1--ï2, a=(2,2).

R(q)** = GL(q.).lv ,v1e¡ =t , v$) = tlt 
^rl 

, xtlt2 €k

orvlr¡r=(| il ,reof U
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GL(o.). fv 'v1,¡¡ =tr, v(O = (;1 ),11l12€k
0

n(diod = GL(q,)

GL(q)

*v(o=(à

lvtv19¡=l.,.v('1,)=(à
lv,v1e¡=(à i) , ¡.€k,

)\2

l) , ^ 
. o¡ .

t^) ,^er<f u
v('1,) = 1l .

b) e= tZSr , s= (1,2,1).

R(o)rou=GL(q,)'s with tt*l =(å) , s(ü) = (0 1),s(g=1,
R(o)-"" = cr,(o¡.lv: v(ç) = (f) , 

"t,r,l 
= (r 0) , v(Ð = r€kl

U R(o)rou .

4. INDECOMPOSABLES AND ROOT SYSTEII{f;

4. 1. Reflection functors

Let Q and o, be as before. Fix a source i of Q , and sup-

pose

, o(hg) > o(i)
tgd

Consider the set

R'(Q,o) = lua R(Q,o) : tv(cp)l:v(i)+ e v(rr9¡f injective .
t9=i

Obviously R(Q,o)Ud is contained in R'(Q,o) , and R.(q,). d = ø if q, does

noü satlsfy the required inequalilSr, unless o = .i .

The quiver Q* is obtained from Q by reversing all arrows wiüh

tail i , and o* is given by

a*(k) =
o(k)
s\
¿J

tç=i

for kl i
aþg) -s(i) for k =i

t q*(tg) > q*(i)
hg=i

Example.
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ao

/:'

^.

O-a+
i

a Q*

We set

Rr(Q*,o,*) = lV€R(Qn,o*):[v(ÐJ: e V(tç) >V(i) surjecHvef
h9=i

PROPOSITION. There exists a homeomorphism

R'(Q,o)/cf,(q,) å R'(Q*,o1 /çt(o"*l
such that corresponding representations have isomorphic endomor-

phism rinEs.

(Yffe use the quotient topologr of the Zariski topology).

proof. Set m= Z o(hg,W=km, and

r,:1'
f = TT Homlko(te), ro60) , õ = TJ cltotjll .

ifrç€Qr
tçli

The required homeomorphism is obtatned from the following dÍagram, in whlch

we use the isomorphisms

R'(Q, o)/Gl,(q.(i)) å F, o"o,rr*
v _ (cvell*,i-tv(gl mp=i)

R'(Q*,qllCr,(ø"(i)) -, ñ, o"o(r)*
v ,-- (utvllo,6r,r<ertvtoìo*_.) .

Here GäOW denotes the Grassmann varlety of o(l)-dimensional subspaces

of \t¡ .

I

Rt(Q,o)

l'o",o0,,
I

Rr (Q, a,)/cL(q,(r))

Rt(e*,qf)

l/cr'1o*1¡¡
I

Rt(Q*, o*),/cr,6*6¡¡

/
/G

\
-RxGr w /cq(i)

We have
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The claim about endomorphism rings follows from

ccr, cr,(o(i))v a tGv 
'

cd' c"1oo1',,v* 
1 cuV*

for V € R(Q,o.), V* € R(e*,o*) , where V and V* are the images in
F x Gro,.,W .

COROLLARY. Ttre number of parameteis as well as the number

of irreducible components of maximal dimension oihcide for
and d€IN

Remarks. The isomorphism above is induced from the "reflection
functor" of Bernstein-Gelrfand-ponomarev IBGpl , which plays a crucial role
in the proof of the two theorems of chapter l. Independently it was introduced

by Sato and Kimura under the name of "Castling transform" [SKl

We could have started from a sink instead of a source, conside_

ring i € Q[ first. An admissible vertex is a source or a sink. In particular,
no loop is attached at an admissible vertex. We witl say that (eo, or1 is
obtained from (Q,ø) by applying the "reflection't R, at the admissible vertex
i of a.

It follows from the preceding proposition that all the results we

proved in chapter 3 for o € Fe still hold for representations of a quiver õ
of dimension type ã, provided that lõ,õ i. obtained from (erd bf applying

a series of reflection" Ril,Ri2,...,Ri" to (e,q,) , where il is admissible
in Q , i, is admÍssible after reversing the arrows wlth extremtty i, and so on.

4.2. ReaI and im roots

R(a,")i(Îl nte",olid). . for all

With each vertex i of e to which no loop is attached we asso_

ciate a reflection r. , y,n- Zn given by r,(o) = c- (q, e.)e, The Wevl group
llll

* = *e is the subgroup of otlnî¡ generated by the r, It is contained in
the orthogonal group O(Zn, qe)

A root of Q is a vector q,€ D¡n such that R(e,q) contains an

indecomposable representation. Roots have connected support. If for a root o
we have p(R(a)ind > 1 , q, is calledimaginarv, and real other\rr'ise. So a
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root o is real if and only if R(*)ind contains a finite number of orbits. rvve

will see as a consequence of the main theorem that in this case R(o)rn¿ is
one single orbit. Wedenote by A = A(e) , Are = A(e)"" and A.m = A(e)im
the sets of all roots, the real roots, and imaginary roots, respectively.

A. slmple root is a vector .i , where i is a vertex in which
no loop is attached. Eqrivalently, s- does not lie in 

" 
= 

"e 
(B.f). The

set of simple roots is denoted by It = fl" Clearly Il s Are

If Q is a Dynkinquiver, then \lU= AU-A is thecorresponding
root system and W its Weyl group [Bì .

4. 3. Kacts theorem.

THEOREM.

is one orbit.

b) A(Q).tm
q, € A(Q).m , then U (R(Q, o)irrd) = 1- q(o)

The proof rests on the following crucial lemma, which we will
prove in chapter 5.

FUNDAMENTAL LEMMA. FoT o € Nn the number of

a) A(Q)re = Wn nNn ; lf q € A(Q)re, then R(o)rn.

wr, ; t[

omor-
phism classes of indecomposables V with dim V = q, as well
as !L(R(Q,o)roO) onlv depend on the underlving sraph Q of A
(and not on the orientation).

Proof of the theorem. For I € W and s e l\[er] , r.q lies
again in A Indeed, by the fundamental lemma we may assume that i is
admissible, apply4.l and the fundamental lemma again. so A\wn is stable
under W ; we wânt to show that it is contained in WF , where F = ïþ. For
o€ A\\VI we choose g € Wø with minimal height ht(ß) = å pOl Ttren

i=1
ht(lpl = hr(p)- (p, e.) > hr(F)

forall 1€W, whichimpliesdrat g€F. Notethat
We conclude lhat A s (w]l n lstlU WF . Conversely, F

A\rtr[ by theorem 3.3 and remark 3.S.

In order to prove

(F,e-)<0 for e.€FJJ
and thus WF lies in
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t¡(R(Q,diod) = 1-q(a)

for o € A(Q)r*, we write o = "k....ïF, B €F, and proceed by inùrction

on s For s = 0 , the result follows from theorem 3.4 and remark 3.5. For

sàl , we set y = t"_r..."rrÊ and choose an orientation Qr for whlch i"

fs admtssiblg. By Q" we denote the quiver obtained from Qr by reversing

tbe arrows with extremlf i" . üsing the fundamental lemma and 4.J., we

find

p(ß(Q,dioJ = !r(R(Q',o)rou) = p(R(Q",y)rnd) = u(R(Q,y)rou) ,

whicb by the indr¡ction hypothesis is equal to

l-q(v) = 1 - Q(d .

An analogous argument for q €W[ nbln finishes the proof.

The following propositionfrom [K1, prop.1.6ì generalizes

tàeorems 1 and 2 of chapter 1.

PROPOSITION. Let Q be a connected quiver whose proper sub-

quivers are all elther of finite or of tame tvpe. Then

a(Q)re = ¡oe n'ro : q(a) = lf ,

Â(Q)im = lo . nrn\{ol : q(q,)< of '

E:<ample.

Q=14:2

-
q=l

4

3

2

I

F

q=1

L2345678
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5. PROOF OF THE FUNDAMENTAL LEMMA.

5.1. Startingfrom a quiver Q, any orientation on õ can be obtai-

ned in several steps by reversing one arrow at the time. For any arrow

r{r :i * j of Q , we can write

where

and

n = TJ Homl¡q(t9,ko(h9)) .

cPl ù
lhus we have to compare the numbers of non-isomorphic indecomposables

in ñxH and ñx Ho, where

H* = Homlka(i), oo(i),

is the dual vector space of H. ünfortunately, there seems to be no way of

doing this directly over an arbitrary aLgebraically closed field k .

However, a result of Brauer shows that this comparison is pos-

sible over finitefields (5.5). Countingpoints of varieties infinite fieldsyietds

the fundamental lemma for the algebraic closure { of \ , for any prime
p (5.6). Finally, interpreting ihe representâtions in R(Q,q,). ovet an algebrai-

cally closed field k as the k-valued points of a scheme over Z, , one obtains

the lemma incharacteristic zero (5.?). So this is one of the eriamples where

the only proof known for a result about fields of characteristic zero passes

via fields of positive characteristic.

For any field k -not necessarily algebraically closed- we denote

by R(Q,q,)(k) the set of k-representations of Q of dimension type o :

R(e,O(k) = 
tlrHo-o{kt(q,ko'(hq) 

.

Ismorphism classes of k-representations correspond to orbits of GL(o, k)

in R(Q,q.)(k)

5.2. Fix aprime number p and an algebraic closure k of 5.
Recall that k contains precisely one field IF r with pr elements for r EN,p
s¡hich is the fixed field in k of the r-th powei of the Frobenrus automorphism

R(Q,o) =RxH,

H = Hom(ko(i), ¡o(l)¡
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x * f of k . All fields K, L, E, F occuring up to section 5. 6 are finite

subfields of k .

Let K c L be an extension of degree r , and conslder the func-

tors
L 6X : R(Q,s,)(K) *R(Q,o)(L)

and, for a fixed choice of a k-basis L = Kr ,

lx, niq, o)(L) * R (Q, ro,)(K)

Obviously (LSKV)lK is isomorphic to Vr for any representâtion V in

R(Q,o.)(K) In combination with the theorem of Krull-Schmidt, this implies the

following.

LEMMA 1. If for two representations Vl , V: in R (Q, q) (K)

the representations L E, V, and L8-. Vo are isomorphic inKK¿.
R(Q,q.)(L) , then Vt _anq V2 are isomorphic in R(Q, o.)(K)

Let I be the Galois group of L over K , which is cyclic of

order r , and denote by Ll the skew group algebra of I over L : As a

L-(left) vector space, Ll has the elements of I as a basis, and

xoyr = xo(y) or

for x,y in L and o, T in I . We let I operate on Ll by left multi-

plication. The lixed point set 1f,f 
l for this operatiori is obviously a K-left

and L-right vector space.

LEMMA 2. The map

¡r : L8r,(Lf)f*Ll
siven bv the multiplication is an isomorphism of (left and right)

L-yectof_Spaceg..

Proof. Choosing a normal basis ['o(x), o € l] for L over K

one sees immediately that

dim*(Ll)f = r
Thus the two L-vector spaces Lfo(lÐf and Lf have the same dimension

r The theorem about the linear independence of distinct o in I within

End,.L shows that any L-linear form on Ll which annihilates im¡.r is
ll

zero. Therefore ¡l is surjective.
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Remark. For any representation \/ in R(e,o)(L) we have

the decomposition

Ll 8"1V = er oW

o€l
of Lf %W as a direct sum of L-representations

or¡ = [ogw: w€ w]
of dimension type q, .

The representation oW can be described as follows : for any

vertex i of Q , the L-vector space ow(i) has the same underlying abelian

group as W(i) , but theproducl a.w is given by o-11a¡w for a€ L and

w € ow(i) ; for any arrow cp , ow(ç) equals W(ç) obviously o* 
l* is

isomorphic to WIK .

5. 3. An indecomposable representation V in R (e, o) (K) is called
absolutelv indecomposable if k AKV is indecomposable. Equivalently, LgK V
is indecomposable for any extension L of K An extension L of K is
called a splitting fietd for a representation V in R(e,q,)(K) if LS,KV is
a direct sum of absolutely indecomposable representations in R(e,o)(L)

LEMMA I. Let V be indecomposablein R(Q,o)(K) Then

L = End V,/rad End V

r = [l:x] divides o

tsâ field for V Moreover

and we have

L 8*V - LlsL !V= 

"?a 
o\M 

,

-where l= Gal(L: K) , for some absolutel indecomposable re-
lV in R(Q,9(L) , and the representations' -'t.' 

-

ownTesentâtion

âre Dâirwìse non-isomorDhic

Proof. Since V is indecomposable, L = End V/rad End V is

a (finite) skew field and thus a field. We have

End(Lfuv) - L% Endv ,

and also
rad End (L%V) - L 8^radEnd V ,

since K is perfect. So we find an isomorphism

End(L8"V),/rad End(LsKV) - LA*L - Lr
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Therefore L % V can be decomposed in R(Q,o)(L) as a direct sum

L aK v = \v'o...@ wr ,

's are pairwise non-isomorphic and have L as endomorphismand the

algebra

End(E s !\)/rad End(E e $i) + E

for any extension field E of L, Wi is absolutely indecomposable for

i =1,.-,r . For any o in I , the represenlations L%V and

otr,%Ð = ortrl 
@...@ 

owr

areise¡¡o¡pþic. UsingKrull-Schmidt, we find that [W1,.-,\] is one l-
orbit, up to isomorphism. This proves the lemma.

Let W be in R(Q,q)(L) A subfield K c L is a field of

definition for W if there is a representations V in R(Q, o)(K) such that rvv

is induced from V ; i.e., W is isomorphic to L AK V .

LEMMA 2. A subfield K of L such thai oW is isomorphic

to 'iV for all o € 1.= Gal(L:K) is a field of definition for ïV

Proof. Clearly we may suppose that the indecomposables in a

decomposition of W form one l-orbit up to isomorphism. B¡r our hypothesis,

Lf%W is isomorphic to WJ , and lemma 2 of.5.2 tells us that Lf%W is
r

induced from (Lf)'8L W in R(Q,ro.)(K) Thus we have

'dvr :- LurVt @...@L*xvt

for some indecomposable K-representations Vl,...,Vt Our assumption on

the indecomposables occuring in W implies that L SKVi is isomorphic to

some Wsi for all i . So we have found an integer s and an indecomposa-

ble K-representation V such that Ws is induced from V

Set F = End V/ rad End V , and let E be a common extension

field of F and L in k . By lemma t ,

Es-- v -' E E- lvsl(L

is a direct sum of pairwise non-isomorphic indecomposables, which implies

s=1

w.
I

As
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COROLLARY. a) Any splitting field E for an indecomposable

representation V in R(Q,a,)(K) contains L = End V,/rad End V.

b) Anv field of definition K for a representation

R(Q,CI,)(L) contains the fixed field t G 
, Jrh"Ig

G = {o €Gat(L: \) : ow : wl .

Win

We call the field L of a) the minimal field of V

and the field LG of b) the minimal of definition of W

Proof. a) For any splitting field E for V , we have a decom-

position

EaKV =U1O...@U",

where the U.'s are absolutely indecomposable and ¡¡¡here r = [],: Kì , inde-

pendently of E bylemma 1. As a consequence of lemma 2, the Urts form
one orbit up to lsomorphism under Gal(E: K) , since V is indecomposable.

Thus r divldes [E:K] , whùch implies L s E

b) If K is a field of definition for W , obviously the group

Gat(L: K) is contained in G =Gal(L: LG¡ then [L: Kl divides IL, LGì,
which implies that ILG: I[] divides [X:n I . and thus LG s Kpp

5.4. We sum up our results in form of the following lemma. For any

power q of p we set :

v(Q,o;q) = number of isomorphism classes of indecomposable
representations in R(Q,o)(%) ,

rra(Q,o;q) = number of isomorphism classes of absolutely inde-
composable representations in R(Q,o,)(IFO) ,

p(Q,o;q) = number of isomorphism classes of absolutely inde-
composable representations in R(Q,g(IF^) with mi-
nimal field of definition IF . q

LEMMA.

ãl va(Q, q,; q) = Ð p (e, o. ; q')
IF.SIFq'q

b) v(Q,o.;q) = va(Q,o;q) +Ð ] oto,$;o"l , where r ranggs
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Proof. a) is clear, and b) says that the isomorphism classes

of indecomposables in B(Q,o,)(K) with minimal splitting rield 
\r are in

bijection with the isomorphism classes of Gat(IF 
" 

: \) -orbits of indecompo-

sables in R(a,T)(%r) wfth minimat field oi Oerinition 
\r .

over all lrreater thân

5.5. The ' emma for finite flelds't.

Fix a finlte field Fc k

LEMMA. The number of isomorphism classes of representations

in R(Q,o,)(F) is lndependent of the orientation of e

Proof. Using the notations of 5. 1 , we have to show that GL(o, F)

has the same number of orbits in R-x H as in ñ,xH* . Choose representa-

1 for which g belongs to DtT--.

tives Vt,...,Vr from the (finitely many !) GL(o, F)-orbits in R

Gl(o,F)-orbit in ñxH or ñxH* corresponds to [he choice of a
of " Ccllo,F¡Vi-orbit in H or H* , respectlvely.

Choose i
the o-vector space oH

0II by

(e'Ð(h) = r61.h) .

A fixed point of G in oH is a map which is constant on G-orbits in H

Thus the number of G-orbits in H equals the dlmension of the vector space

tdlc of fixed points of G in tcH

To prove our assertion, it suffices to exhibit a G-equivariant

isomorphlsm

r,d*cHo.
The Fourier transform, which is defined as follows, does the trick :

(rÐ(ç) = # Ð f6) exp(+ rr(ç(h)))
ltl nrH - 

P

for f €d,p€OHo Here lul isthecardinalityof H, andtr
the usual trace map. A.n easy computation shows that

(F(Fr))(h) = 
lnairnn, 

.

A.

vt and

in [1,...,r] , and set G = CcL(o,f¡{ Conside¡

of maps from H to 0 , and let G operate on

F *IF
p
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So F is an isomorphism, which ls G-equivariant by definition

Remark. The result that a finite group operating linearly on a
finite vector space v has the same number of orbits in v and v,* seems

to be due to Brauer, but we have not been able to find a precise reference.

COROLLARY 1. The number of isomorphism class es of inde-
composable representations in R(Q,o)(F) is independent of the

orlentatlon of Q .

Proof. Use induction on ht(ø) = å oGl and Krull-Schmidt.
i=1

COROLLARY 2. The numbers va(e, o ; q) and p(e, o;q) -qe:Li-

ned in 5.4 are of the orientation of a for any

q= ps andanv q..

Proof. This is clearly true for any q if ht(o¡ = 1 Suppose

it is true for any q and any p with ht(g) < ht(o) Then formula b) of
Lemma 5.4 implies that ,"(e,o;q) is independent of the orientation, as

v(Q, o.; q) Is by corollary 1.

To prove the Independence of p(e, o ; ps¡ of the orientation, we

keep o fixed and apply induction on s For s = 1 , we have

p(Q, o; p) = va(Q, q;p)

Ttre general casefollows from formula a) of lemma 5.4, which says that

va(e,o;ps)= p(e,qips) + t p(e,o;pt)
t/s
tls

5.6. The fundamental lemma for k= F:
Let ? . d O" -*.U, closed lu¡.ut which is stable under

the Frcbenius automorphism o of kN Fo" any finite subfield Fq of k ,

set

u(\)=''rnd.
This set may well be empty for small qrs However, the famous result of
Lang and rtreil a]¡out countingpolnts of varieties in finite flelds ([Lw], see

also [Sctrì for an elementary approach) implies the cardinality of ?,( (IFq)
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behaves as follows :

PROPOSITION. If ?.,1 is stable under o , lhen

n?ûF)="odi-?"q'
where c is the number of irreducible components of U gf

m¿ximal dimenslon.

The symbol f(O s e(Ð means that either f(Ð = C(O = 0 for

q large or that f(q),g(q) I 0 f.or q large 
"oo 

f(ql-g(q) 
0 .- Ï(q) Q- ø

The set R(a,dlll of indecomposable representations of Q

over k of dimension type o, and wilh d-dlmensional endomorphism algebra

is a locally closed subset of kN , where N = L q,(tç)q.(hç) (2.5) Let
e€Ql

v be in R(Q,q,)l:I All coefficients of all matrices v(ç) , cp € Q, , lie

in some finite subfield K c k , and we may view V as an absolutely inde-

composable representatlon in R(Q,o,)(K) wlth d-dimensional endomorphism

algebra over K . An easy computation shows that applying the Frobenius q

to all coefficients of all matrices V(g) while keepingthe bases of all V(i)

fixed yields a representation isomorphlc to oV (5.2, remark), where o is

viewed in Gal(K : $) Therefore R(a,o,¡{là is stable under o , and we

may applv the preceding proposillon. We flnd :

r R(4, dl:!(%) = c(d) qu(d) 
+ dlm GL(o') -d 

,

where p(d) denotes the number of pârameters (3.4) and c(d) the number

of irreducible components of maximal dlmension of R(Q,ø)l:à .

For an absolutely indecomposable representation V ln

R(Q,o)(tro) , we have

GL(o.).u n d = GL(o,IF ).v

by lemma t- of 5.2. If v lies tn n1O,ø¡fl! , its Gl(o)-orbit is a locally

closed irreducible o-stable subset of dimension GL(o) - d , and we find :

Í (GL(q,)V)(IF ) = qdi* GL(o) - d
"q'
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behaves like

orblts ln R(Q

c (a¡ ql.t(d)

,o)ina(%)

, and thus the number vâ(e,o;q) of CL(o,\)-
like cqU , where ¡l = max ¡.1(d) is the number of

parameters of R(Q,o)rnO (8.4) and c = Ð c(d)
p(d)=p

But vt(e,q;q) is independent of the orientation of A (b.b)

Ttrerefore the number of parameters ¡-r and the number c of irreducible
components of R(Q'droo wrth number of parameters ¡-r are independent as

well- since for u = 0 , c is the number of orbits, this ends the proof.

Remark. As we may now apply Kacis theorem to F- , we see

that p= l-q(o-) , independently of p Moreover, there exists precisely one

irreducible component of R(Q,o).oO for which [he number of parameters is
maximal, which means that c = 1 Indeed, this is true for o € F, , it
remains true if we replace (a,d by (e*,o{) for some ref'r.ection at an

admisslble vertex (4.1), and it still holds when we change orientation. In
particular, if the generic representation of dimension type ø is indecompo_

sable, the number 1-q(o) of parameters of n1o¡max lcorollary 2.7) ls
strictly greater than the one of any other lrreducible component of R(o)rrr. .

5.7 End of the oroof

In order to transfer our results in characterfstic
terlsüc zero, we have to deflne our varielies over Z, Let
the polynomial ring over Z in the variables **,", , ,n"""
the arrows of Q and 1 < s < o(tcp), 1 s t < q.(hq, and set

R = 6ì(Q, o,) = Spec n[** 
rrr]

p to charac-

T,[x I be
cp;st

cP ranges over

obviously R' is affine N-space over z, with N = L q(hç) o (tg) For

any (commutative !) ring A , the A-valued polnts ,TÍ,tt* R can be iden-
ttfied with

[l^ Homo(Ao(t0, oo(h9), .

ç €er
In particular, lf k is an algebraically closed field, we have

0(k) = R(Q,ø)(k)
As a consequence, the number of GL(q.,IF )-orbtts in R(Q,o.)

(d)

ind
(F)

q
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Next we want to deflne a scheme whose k-valued points are

pairs (V,Ð consisting ofa representation V and an endomorphlsm f of

V To thls end, we set

?î = Spec Z[Yi,jkl ,

where i ranges over the points of a and I < j,k s o,(i) We denoteby

Yi the o,(i) xo(i)-matrlx whose entrie. "t" tO" 
"rrjO 

and by *ç the

o6ç) x q.(tg) - matrix with entries Xç;"t . For each ç € Qf , the equatlon

X.Y -Y-.X =0Afçhcpç
ylelds a(tp)o(hp) llnear equhtions ln

'I*rrrl tr t[tr,jk] = %Ixrrsr ' Yi 
; ¡kl

Denote by 3 lhe Ldeal generated by these linear equations, and let

? = spec or"*,"r,"rriyl /3

be the corresponding closed subscheme of Êxft. Obviously we havefor any

algebraically closed field

?(Ð = lff,f): v€R(Q,o)(k), f €rndvf '

Conslder the first projection

n:]*g

and deftne the subset

ld)(-1 ìn'-'= lx€ ß: ¿im n'(x) =dl.

Since sending x to (x,0) ls a sectlonfor n and since allfibers of Tl

are lrreducible, being afflne spaces, e(d) i. locally closed by Chwalleyrs

theorem [EGArV, 13.1ì. rvve endow n(d) *itt the structureof a ¡educed

scheme. Clearly we have

o(d)6¡ = n(d)(e, d(r.)

for any algebralcally closed field k .

In order to deftne the "subscheme of indecomposa.bles in 6(d) ",
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rüe use the characterlzatlon of 2.5 . Let

J . zlYr, jt ì

be the ideal generated by the equations which express that

or equlvalently that {0) = 0 , for all vertices i Then

. n = spec ,r**rst,y¡ilrl /,9+g

is a closed subscheme of ? . Applying, Chevalleyrs theorem to the first
projecflon

nt: 1*P,
we see that the subset

s(t) =lx€ß: ai*n'-11*¡ >tf
of ß is closed for all t Indeed, the zero section for î' meets all lrre-
duclble components of each fiber. We give the intersection

01L = 0(d) n s(d-l) ,rnd
(d)

wblch is closed in e , the structure of a reduced scheme. For any alge-

braically closed ftel.d k , n!flUtf.l consists of those representadons with d-

dimensional endomorphism algebra for which the nilpotent endomorphism form

a subvariety of dimension d-l ; this is just nte, dllltrl .

Summing up, we have defined for each d a locally closed redu-

ced subscheme *(d) of R and a closed reduced subscheme r,(Ît of 0(d)

such that

(d) (d)

{îln,= R(4,")Í:I(k)R, (k) = R(Q, q) (k) and

for any algebraically closed field k

Let k be algebraically closed and choose an algebralc closure

k0 within k of the prime subfield of k For any d , the varieties

a!flutr.f and efflfr.¿ have the same dÍmenston and the same number of

lrreducible components of maximal dimension [EGA. IV, 4.4ì . 'Iherefore the

fundamental lemme is true for k if ti holds for k0 . It remains to prove it
for an algebratc closure of Q

Consider the canonical morphism

Yi is nilpotent,
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fd ' n!d)- * spec z
rncl

There is a non-empty open subset trd of %, such that

-1 -tdim fO-(0) = dim fo'Þ)

for all p in Ud ([EGA I\I , g.2l If -Q and IF denote algebraic closures

of Q and IF , then njfltÕ and nji|Çl .""'rh" varieties of @-vatued

points of f,l(O) and F -valued points of {1Ol , respectively. We find

oim n!f;.{ar = trr- njfilriror

for all p in the open set U = frUO and all d

For any algebraically closed field k , the numbe¡ of parameters

of R(Q,o,)rnO(k) ls defined as

¡,r(k) = max(dim R(Q,"1{llfr.i - dim cr,(o.) +d) (see 3.4).

As $(%) = 1-q(ø) for all p , w€ conclude that p(0) = l-q(o) , indepen-

dently of the orientatlon of Q

Remark. Reflning the last argument one can show that for any

algebraically closed field k the number f - q(ø) of parameüers is reached

for precisely one irreduciblecomponent ofprecisely one *fl!tO,o)(k) .

Suppose 1- q(o) = 0 . For any prime p there is a unique %(dn) -such that R(a,c,);ã (\l is non-empty, and then it is a single GL(o, IF)-
orbit. As dO= d is constant on U , we see that n<e,"ljfltO) is empty

for d' I d . Moreover, n!flufQl is connected by tEcAIV, 9.?l , and thus

consists of a single orbit. This ends the proof of the fundamental lemma for õ.
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