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Introduction 

In a celebrated paper [1] Brieskorn describes a beautiful relation between 
simple complex Lie groups and simple surface singularities (cf. also [11]). His 
result is the following. 

Let G be a complex Lie group of type A,, D,, E 6, E 7, E 8 and U the 
subvariety of unipotent elements of G. U is the closure C of the regular unipotent 
class C and we have: 

i) There is a unique conjugacy class C', of codimension 2 in U with C '=  
U -  C (C' is called the subregular class). 

ii) The singularity of U in C' is a simple sutface singularity of corresponding 
type. 

As for the variety U itself Kostant has shown [7 3 that it is always normal 
and Cohen-Macaulay. In fact it has even rational singularities ([4]: for the 
definition see [6]). 

In [8, 10] we proved these last results for the closure of any conjugacy class 
in GL,,(~). In this paper we will generalize the theorem of Brieskorn, always in 
the case of GL,,(C) (Theorem 3.2; cf. [3] for related results). 

Our setting is the following: Let C be a conjugacy class in GL,(Ir) and (" its 
closure. In general the complement D = C - C ,  of C in (', contains more than 
one single open conjugacy class (unlike the case of the regular unipotent class). 
Nevertheless if C/is an open conjugacy class in D ( a minimal degeneration of C), 
we are able to describe the singularity of (" in C i up to smooth equivalence. 

If C i has codimension 2 in C this singularity is still a simple singularity of 
type A j, where j is determined by the Young-diagrams of the conjugacy classes. 
If Ci has codimension >2  the singularity is equivalent to the singularity of a 
minimal class in the unipotent variety of some GLm(II; ). This singularity can also 
be described as the collapsing of the cotangent bundle of the projective space 
ipm 1 (2.4). In this case the singularity is determined only by its codimension 
which can also be read off from the diagrams. There is furthermore a formal 
duality between the two types (Remark 3.3). 
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The theory exposed here can be completely developed for conjugacy classes 
in classical groups and in fact we were motivated by the study of the normality 
problem in these cases. These results are contained in [9]" it seemed to us 
worthwhile to expose independently the results in the simpler case of GL n in 
order to complete the study carried out in [8] and to pave the road for the 
somewhat complicated analysis in [9]. 

One final important remark'  By the general theory of group actions on a 
variety it easily follows that all problems concerning singularities of closures of 
conjugacy classes can be reduced to the case of unipotent classes [5]. In turn, in 
characteristic 0, the variety of unipotent elements of a group G is isomorphic (in 
a G-equivariant way) to the variety of nilpotent elements in the Lie algebra .q 
=Lie  G. Thus our analysis is always restricted to nilpotent elements in g (in the 
present paper nilpotent matrices). 

We advise the reader to consult the tables at the end, to visualize the results 
for GL, with n < 9. 

We always work over an algebraically closed field k of characteristic 0; some 
results easily extend to positive characteristic. 

1. Degeneration of Conjugaey Classes 

1.1. Let us fix some notations. Any nilpotent n x n-matrix is conjugate to one in 
normal Jordan block form: 

Ji, t Jt, z " JP~ I " J t : = I  0 

1 

0 1 

0 1 

0 

a t x t-block. 

We can assume p~ ~P2 ~> '" ~Ps; this decreasing sequence t /=(Pl ,  P2 . . . . .  p,s) is a 
partition of n and it is convenient to represent it geometrically as a Young- 
diagram with rows consisting of P l, P2 . . . . .  p~ boxes respectively: e.g. the diagram 

corresponds to the partition (5, 3, 2, 2, 1) of 13. 
The dual partition 0 =(/3~,/~2 . . . . .  f i t )  is defined setting/3 i equal to the length of 

the i-th column of the diagram t/:/3i:= #{j lp~>i}.  In case of a partition t/ 
associated to the normal Jordan form of a nilpotent matrix A, the dual partition 
0 has the following interpretation: 

J 
dim ker A J= ~ /~i 

i = 1  
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or equivalently 

rk A i= ~ fii. 
i> l  

It is clear now that we have a one to one correspondence between nilpotent 
conjugacy classes of n • n-matrices and partit ions of n. If 11 is a part i t ion the 
corresponding conjugacy class will be denoted by C,.  

1.2 .  Given two parti t ions r / = ( p l , P 2  . . . . .  p,) and v = ( q l , q 2  . . . . .  qz) of n, we say 
~1 >= v i f  we have 

i i 

Pi>= ~ qi ,Ibr all j .  
l= 1 i=1 

This is equivalent to y, 13~ > y" c~k for all j. 
k > i  l,>i 

Lemma ([3], Proposi t ion 3.9). *(1 q > v alld no partitiol7 is ill betweet7 them (i.e. q 
and v are adjacent in the ordering), then the diagram v is obtained fi'om q by 
moving mw box dowH either to the next  row or to the ~ext column. 

II i 
E.g. ~1= I ] and v =  

E5 
o r  

~1 = . . and 

More  formally we have the following two possibilities for an adjacent pair ~I > v, 

V] = ( / 1 1 ,  F2 . . . . .  Ps) '  V = ( q , ,  q2  . . . . .  qt) :  

I) There is an i~IN + such that pk=qk for  k4=i, i + 1  and q i = P i - - l > = q i + l =  

Pi+x +1.  

II) There are i, j e N +, i < j ,  such that P~ = qk for  k + i, i and qi = pi - 1  = q a = p j + l .  

We remark that if r/> v are adjacent of type I (of type II) then ~>1~ are adjacent 
of type Ii (of type I). 

1.3. The following is the basic result on degenerat ions of nilpotent  conjugacy 
classes and on their dimension (cf. [3] Theorem 3.10 and Corol lary 3.8(a)). 
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Proposition. a) Given two partitions r 1 and v of  n, we have q>=v if  and only if  
C,  ~ C,,. 

b) / f  r/=(Pl . . . . .  p~) is a partition of  n and 0=(/3~ . . . . .  ~,) the dual partition, we 
have 

dim C , = n 2 - ~  min (p. p i ) = n 2 - ~ / ~ 2  =2 ~/~t*j.  
i , j  i i < j  

1.4. Let us call a degeneration C, _~ C, minimal if C,, is open in C , -  C,, i.e. if C,, 
+ C, and there is no conjugacy class C such that ( ' , ,~ C ~  C,. By Proposition 
1.3 this means that v < q are adjacent. From 1.2 we get the following result. 

Corollary. Let C,,~ r be a minimal degeneration. Then we have one o[ the 
following two cases: 

I) codimc, C,, = 2 and the diagram v is obtained from q by moving one box down to 
the next  row, 

II) codimc, C,, = 2 r and the diagram v is obtained fi 'om rl by moving one box down 
to the next  column; if  the box is moved fi'om the i-th row to the j-th row then r = 

j - i .  

We will refer to this by saying that C,,_m C, is a minimal degeneration of  
type I or of  type II respectively. 

2. Subregular and Minimal Singularities 

2.1. Definition. If X, Y are varieties and x e X, y e Y two points, we say that the 
singularity o f  X in x is smoothly equivalent to the singularity o f  Y in y, if there is 
a variety Z, a point z ~ Z  and two maps r Z ~ X ,  ~J: Z ~ Y  such that r 
~ ( z ) = y  and r and ~J are smooth in z. 

g - -  r ) X  

| uJ 
21 ) X  

Y ~ y  

It is easily seen that this defines an equivalence relation," the equivalence classes 
will be denoted by Sing(X, x). 

Remark.  If d i m x X = d i m v Y + r  with re iN one can show that Sing(X,x) 
A 

=Sing(Y,y) if and only if Cx,x:c~(S'r,y [ [T  1 . . . . .  7~]] (cf. [11] III 5.1 Hilfs- 
lemma; CSx. x denotes the completion of the local ring Cx.x). 

Assume that an algebraic group G acts on a variety X. If O ~ X is an orbit 
under G we have Sing(X, x )=  Sing(X, y) for all x, y eO.  In this case we also 
write Sing (X, O) for the corresponding equivalence class. 
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2.2. The conjugacy class of the matrix 

-0 1 

0 1 

0 

e M,(k) 

1 

0 

is called the regular nilpotent conjugacy class; it will be denoted by C~g. By 
definition Crag is associated to the partition (n} and its closure C~eg is the set of 
all nilpotent elements in M,,(k). It follows from Proposition 1.3 that its boundary 
?C~d=C~,.  ~ -  C~g is the closure of the conjugacy class C~,,_ ~�9 this class is 
called the subregular nilpotent conjugacy class and will be denoted by C,~ubreg. By 
1.3 b) we have codimG~ * C~,b~ = 2. 

The following result is due to Brieskorn ([1], cf. [11] II 6.3 Hauptsatz). 

Proposition. The singularity of C~g in C,~b~g is smoothly equivalent to the simple 
suJj'ace singularity A ..... ~" 

Sing(('~g, Csubreg)=A,_ 1. 

As usual A,, ~ denotes the (class of the) isolated surface singularity given by 
the equation x " + y 2 + z 2 =  0 in k 3 (cf. [11] II 6.1). 

2.3. On the other hand M,,(k) contains exactly one minimal conjugacy class 
different from the zero class, namely Cm~n:=Ci2,~,~ ..... ~1. We have Cmln 
=C,~1~,,U{0 } and d imCmin=2(n-1  ) by 1.3b). Cm~ n is the orbit of a highest 
weight vector in Lie S L,,(k)c M,,(k). Vinberg and Popov have shown that for any 
irreducible representation of a reductive group the closure of the orbit O of a 
highest weight vector is always normal ([12] Theorem 3). Kempf generalized this 
proving that 0 has rational singularities ([6] w In particular we get the 
following result (cf. [8] Theorem 0.1). 

Proposition. Cmi . is normal, Cohen-Macaulay with an isolated rational singularity 
in zero. 

2.4. It is easy to describe a resolution of singularities of 6'min (cf. [6]). Let P 
cGL,,(k) be stabilizer of the line ke l, e~:=(1,0 . . . . .  0), and denote by u the 
nilradical of the parabolic subalgebra LieP of M,,(k). Then GL,,(k)/P'~IP~- ~ and 
the associated vector bundle 

G L,,(k) x Pu--*G L,,(k)/P 

is the cotangent bundle�9 Furthermore n c Cm~ n and the canonical map 

r GL n X Pll---r Cmi n 

induced by (g,A)~--*gAg-1 is a resolution of singularities (i.e. is proper and 
birational) with q~-l(O)= zero section of the cotangent bundle. This means that 
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we obtain the singularity Cmi n by "collapsing" the cotangent bundle ~/" IP'~ 1 
([6]). We will denote this singularity by a, l: 

Sing (~'mi n, 0) =a ,_  1. 

Of course we have a~ =A~. 

3. The Main Theorem 

3.1. Our main theorem on "minimal singularities" will be an easy consequence 
of the following general "reduction result". 

Proposition. Let C,, ~_ C, be a degeneration of nilpotent con]ugacy classes in M,(k) 
and assume that the first r rows and the first s columns of t 1 and v coincide. Denote 
by rf and v' the Young-diagrams obtained .from tl and v erasing these rows and 
columns. Then C,,,c C~,, 

codimc,, C,.,=codimc~ C,, and Sing(C,,, C,,,) = Sing (( ' , ,  C,,). 

The proof  will be given in the following two sections, where we will treat the 
two cases "erasing rows" (Proposition 4.4) and "erasing columns" (Proposition 
5.4) separately. The first case will be handled by a cross section argument using 
the normality of the closure ( ' ,  ([8]); in the second we need a careful analysis of 
the "induction Lemma" of [-8] given by the first fundamental theorem of 
invariant theory. 

Remark. The closure of any nilpotent conjugacy class in M,(k) has a natural 
desingularization analogue to the one described in 2.4 for ('m~," N. Spaltenstein 
has informed us that the exceptional fibres of on element in C, and an element 
in C,,, (notations of the proposition above) turn out to be isomorphic. 

3.2. Now we can prove our main result. 

Theorem. Let C'~_ C be a minimal degeneration (7,[" nilpotent conjugacy classes in 
M,(k) (i.e. C' is open in C -  C). Then the singularity of C in C' is either simple of 
type A,, or it is of type a,, for some m < n. More precisely 

C,)=SAm for some m<n if codimcC'=2 
Sing(C, 

)a~ m if codim c C' = 2 m > 2. 

Proof. Let r /and v be the associated partitions to C and C', 17 =(Pl,  P2 . . . . .  P~0. If 
C'~12 is a minimal degeneration of typeI  (1.4) then v=(p 1 . . . .  ,Pi 1,Pi - 1 ,  
Pi+ 1 + 1, Pi+ 2 . . . .  , Ps) for some i~N + (1.2). The Proposition 3.1 implies (erasing 
the first i - 1  rows and the first Pi+ 1 columns 

Sing(C, C') = Sing (C'(t), C(t_ 1, l)) =A t -  1 

with t = p i - p i  + ~ <=n, and codim e C' =2. 
If C ' _  C is a minimal degeneration of type II we find from 1.2 

v=(pi , . . . ,P i  t , p i - l , p i + l  . . . . .  P2+ 1,P2+ 1 . . . . .  Ps) 
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for some i<j  with p~-1 =p~+~ = . . .  = p j + l .  Hence again from Proposition 3.1 
we get (erasing the first i -  1 rows and the first p j columns) 

Sing((', C')=Sing(Ci2.1,~ ..... 1),0)=aj i 

and c o d i m c C ' = 2 ( j - i  ). q.e.d. 

3.3. Remark. If C is a nilpotent conjugacy class with associated partition r/ we 
denote by C the class associated to the dual partition 0- The map C~--* C is an 
"order  reversing" bijection i.e. C'___ C is equivalent to C___C'. The proof above 
immediately implies the following duality result: 

I f  C' ~ f f  is a minimal degel~ration with Sing(C, C')=A~, then d ~ '  is a 
minimal degeneration with Sing (C', (~) = a,, and vice versa. 

4. First Reduction by Cross Sections 

4.1. We shortly recall the notion of cross sections (cf. [3] 1.7). Let G be an 
algebraic group and V a G-module, i.e. a finite dimensional representation of G. 
The Lie algebra ,q:=LieG also acts on V; we write (X, v)~--~Xv for this action. 
Let Gx be the orbit o f x e  V and y ~ G x .  Choose a complement N of the tangent 

space Ty(Gy)=gy in V and define S:=(N+y)r~Gx .  The variety S is called a 

cross section of G x in y. 

Lemma. With the notations above one has: 

i) S (as a schematic intersection) is reduced in a neighbourhood of y, 

ii) dimyS=codim~x G y and Sing(S, y)=Sing(G x, G y), 

iii) G x is normal in y if and only ![ S is normal in y. 

Proof The map ~o: G x (N + y) ~ V given by the operation of G on V is smooth in 

(la,  y). One easily checks that qg-l(Gx)=G x S, proving i). Since the projection 
G x S ~ S  is smooth too, ii) follows. Finally iii) is a consequence of the previous 
statements and the fact that normality is preserved under smooth maps ([2] IV 
17.5.8). q.e.d. 

4.2. Proposition. Let G be an algebraic group, H~_ G a closed subgroup, V a G- 

module and U ~ V  an H-submodule. Consider elements x ~ U  and y 6 H x  and 
a s s u m e  

i) there is a complement nt of Lie H in Lie G such that myc~ U = {0}, 

ii) c o d i m ~  Hy = codim~7 G y, 

iii) G x is normal in y. 

Then Sing(Gx, G y)=Sing(H x, H y). 

Proof. Put g: =Lie  G ~ b: = Lie H and let U' be a complement of the tangent 
space Tr(Hy)=by  in U: U-=byOU' .  Then 

T~ , (Gy)=gy=by+my  
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and by i) b y + m y +  U' is a direct sum in V. Choose a complement U" of this 
sum in V: 

V = b y |  V ' : = U ' |  

Then S' .=(U'+y)c~Hx is a cross section of Hx in y and T:=(V'+y)c~Gx is a 

cross section of Gx in y (4.1). Furthermore T = S  and dimyT=dimyS by 
assumption ii). Since T is normal in y by iii) and Lemma 4.1 iii), this implies that 

S and T coincide in a neighbourhood of y, hence Sing(Hx, Hy)=Sing(S,y)  
=Sing(T, y)=Sing(Gx, Gy). q.e.d. 

4.3. Remark. It follows from the proof above that we can replace the assumption 
iii) by 

iii)' G x is unibranch in y. 

(In fact this assumption implies that the cross section T is irreducible in y, which 
suffices to deduce that S and T coincide in a neighbourhood of y.) 

4.4. Proposition. Let C, c C, be a degeneration of nilpotent conjugacy classes in 
M.(k). Assume that the first r rows of the diagrams t 1 and v coincide and denote by 
t l' and v' the diagrams obtained by erasing these rows. Then 

codimc. C~=codimc., C,, and Sing(C,, C~)=Sing(C,l,, Cv. ). 

Proof. It is enough to treat the case r = 1. Let m be the length of the first row of t/ 
and v: r/=(m, p2, P3 . . . . .  Ps), v=(m, q2 . . . . .  qt), tl'=(p2 . . . . .  Ps), v'=(q2 . . . . .  q,). 
Consider G:=GL.(k)~H:=GLm(k)•  and M.(k)=LieG~_LieH 
= M , . ( k ) O M .  re(k) with the usual embeddings. We can find elements X 
=(Z,X') ,  Y=(Z,  Y' ) sL ieH  such that X c C , ,  YsC,, ,  X' ~C,,,  Y' sC~., Z~CI,.). 

Since H X = (~m)x C,, and H Y = C(m ) X C v, we have 

codimc,,, C~, = c o d i m ~  H Y (,) 

and Sing(HX, HY)=Sing(C, , ,  C~,). In order to prove Sing(C,, C,,) 

= Sing (HX, H Y) we apply Proposition 4.2 for V: = Lie G ~_ U, = Lie H. Assump- 
tion i) follows from the fact that we can find an H-stable complement m of Lie H 
in Lie G (since H is reductive) for which we even have [m, Lie HI _ m. Assump- 
tion ii) is an immediate consequence of the dimension formula 1.3b) and (*), and 
iii) is the normality result of [8]. q.e.d. 

5. Second Reduction by Classical Invariant Theory 

5.1. We first recall the main construction of [8]. Let X be a nilpotent element of 
M.(k) with Young-diagram q=(Pl  . . . .  , p,~) and r k X = , m .  Then the first column 
of t /has  length/~1 = n - m  and the diagram ~/' obtained from ~/by removing the 
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first column is exactly the Young-diagram of the nilpotent endomorphism X': 
=XlimX: i m X ~ i m X .  Consider the following two maps: 

L.,m: = M.,,,,(k) • M.,,.(k) '~ , M.,(k) 

1~ 
M.(k) 

given by rt(A, B): =BA, p(A, B): =AB. 

The group GL,(k)xGL,.(k) acts on L,. m in the obvious way, (g,h)(A,B): 
=(gAh l, hBg 1), and 7z and p are quotient maps (with respect to GL,(k) and 
GLm(k ) respectively), rc is surjective and the image of p is the determinantal 
variety of matrices of rank < m (cf. [-8] Theorem 2.2). 

5.2. Define E,,m: = {(A, B)eL,.mlrkA = r k B  =m}. 

Lemma. a) The map Tt is smooth in E,.,, with image 

~ (E,,,,) = { Y~ mm(k)l rk Y > 2m - n}. 

b) p(E,,m)= {X sM,(k) lrkX =m} and the induced map p" L',,,.-*p(E,,,,) is a 
fibration with typical fibre GLm(k ). (Here fibration means locally trivial in the 
6tale topology.) 

Proof. a) (cf. [-8] Proposition 3.5). The tangent m a p  drC(a,B ) is given by 
(P, Q)~--~ BP + Q A, hence is surjective if (A, B)e E,.m. Furthermore it is easy to see 
that a matrix YeM,.(k) can be written in the form Y=BA with (A,B)eE .... if 
and only if rk Y > 2 m - n .  

b) Consider the action of G:=GL,(k)xGL,,(k)xGL,(k) on L.,,, given by 
(g', h, g)(A, B) =(g'Ah 1 hBg-  1). Under this action E,,,, is an orbit and the map 
p' is of the form pr: G/H-*G/H' with two subgroups H c H '  of G, hence p' is 
locally trivial in the 6tale topology. Furthermore for each X eM,(k) of rank m 
the fibre p-I (X)={(A,B)eL, , , , IAB=X} is a single orbit under GL,,(k), con- 
tained in E . . . .  and the stabilizer of any element in p-  1 (X) is trivial, q.e.d. 

5.3. Lemma (Notations of 5.1): Put N~:=r~-1(C',,). 
a) p(N,) = (~,, 
b) p-1(C,) is an orbit under GL,(k)x GL,,(k) contained in E,, , ,~N,,  

c) ~(p-  1(C,)) = C,.. 

Nn=rc-l(C,,) - ~ -~C,, 
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Proof. a) is proven in [8] (Lemma 2.3). For b) and c) consider a matrix X ~ C,. 
We already remarked in the proof of Lemma 5.2 b) that p-  1 (X) is an orbit under 
GLm(k ) contained in L'.,,.. Furthermore for any (A ,B)ep-1(X)  the matrix BA 
corresponds to the endomorphism X'=X]im x (cf. 5.1), i.e. rc(A,B)eC,.. This 
implies first that p-X(C.) is an orbit under GLn(k)x GLm(k ) contained in L'., m 
and then that =(p-I(C,)j= C,., hence also p I (C,)~N, .  q.e.d. 

Remark. The construction above depends only on the rank of the elements of 
C,, i.e. only on the length of the first column of q. In particular, /f  C,,_ C, is a 
degeneration such that the first column of v and ~1 coincide and if v' is obtained 
from v by erasing the first column, we get 

1) C~,~ (',. (1.3a), hence N~,:==-l(ff~,)c_N,, 
2) p-X(C~)~N~r~L'.,,, and g(p-~(C~))=C~,. 

5.4. Proposition. Let C~ ~_ C, be a degeneration of nilpotent conjugacy classes in 
M.(k). Assume that the first s columns of r I and v coincide and denote by rf and v' 
the diagrams obtained from rl and v by erasing these columns. Then 

codime, C~=codimc~, C~. and Sing(C,, C~)=Sing((7,., C,,,). 

Proof. It is enough to treat the case s = 1. The codimension formula follows 
immediately from 1.3b. Let m: =d im kerX for some X e  C,. Using the notations 
introduced above we get the following diagram of maps (cf. 5.3): 

N , : = = - ' ( C , . )  ~ , C.. 

Now the second claim follows if we can find an element z ~ N, satisfying the 
following condition (cf. Definition 2.1): 

if(z) 6C~,, 15(z) eC~ and ff and 15 are smooth in z. (*) 

Consider the open subset N',:=N,~I2.,  m of N,. From Remark 5.3 we get 
- - t  t r - - 1  t p (C~)~__Nvc~E.,m~_N, and =(p (Cv))= C~.. Furthermore ff is smooth in N, 

by 5.2a) and ilium: N',~fi(N',) is a fibration by 5.2b) (since N~ is a locally closed 
t subvariety of E'., m stable under GLm(k)), hence t5 is smooth on N, too. In 

particular each element z~ p-l(C~) satisfies the above condition (*). q.e.d. 

6. Tables 

In this paragraph we draw tables representing conjugacy classes in GL., n<9. 
The tables are constructed (following Hesselink [3]) as follows: 

Each conjugacy class is represented by a dot, its corresponding partition and 
dimension (taken from [3]) is indicated at its right. For every minimal de- 
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G L s tl dim 

Av i (8) 56 
�9 (7, l )  54 

&[ 
AI " (6, 2) 52 
�9 ~ / ~  3 (6,1,1) 50 

.\.& 
(5, 2, 1) 48 

a z / / ~  ~ l (5,13 ) 44 

\ J A 3  (4,4) 48 
Z3[ [A 1 (4, 3, 1) 46 

1 ~ . . . . ~  (4,2,2) 44 
(4, 2, 1, 1) 42 

�9 (3,  3, 2)  42 
(3, 3, 1, 1) 40 
(3,2,2,1) 38 
(2, 2, 2, 2) 32 

a3 - -  (2, 2, 2, 12) 30 

(4, 14 ) 36 
(3, 2,13) 34 

�9 a2X.x/3/ (3, 15 ) 26 

(2, 2, 14 ) 24 

(2, 1 ~) 14 ]a, 
�9 (18 ) 0 

G L 9 r/ dim 

* A4 

�9 A2 

~ A2 AI 

. /  \o. 

a4 " " ~  l 

�9 A'~2 a3a2 a2 

(9) 72 

(8, 1) 70 
(7, 2) 68 
(7, 1, 1) 66 

(6, 3) 66 

(6, 2, 1) 64 
(6, 1, 1, 1) 60 

(5, 4) 64 
(5, 3, 1) 62 
(5, 2, 2) 60 
(5,2, 1, 1) 58 
(4, 4, 1) 60 
(4, 3, 2) 58 

(4, 3, 1, 1 ) 56 
(5, 14 ) 52 

(3, 3, 3) 54 
(4,2,2,1) 54 
(3, 3, 2.1) 52 
(3, 2.2, 2) 48 
(4, 2, 13) 50 

(3, 3, 13) 48 

(3, 2, 2, 1 z ) 46 

(2,2,2,2,1) 40 
(4, 15 ) 42 

(3, 2, 14 ) 40 

(2, 2, 2, 13) 36 
(3, 16) 38 

(2, 2, 1 s) 28 
(2, 17) 16 
(19 ) 0 

self dual are necessarily of type A 1 = a  l. Further symmetries can be discovered 
considering the additive behaviour of codimensions in a string. 

Notice also that the singularities of type aj accumulate towards the bottom 
as is intuitively clear if one observes that approaching the zero class the 
diagrams tend to have few but very long columns. 
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