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REDUCTIVE GROUP ACTIONS ON
AFFINE SPACE WITH ONE-DIMENSIONAL QUOTIENT

HANSPETER KRAFT GERALD W. SCHWARZ

§ 0. Introduction

(0.0) Let G be a reductive complex algebraic group acting algebraically on X,
where X = A™ is complex affine n-space. It has been conjectured by Kambayashi
[Ka] that the action must then be linearizable, i.e. algebraically isomorphic to a
representation of G. This conjecture seems a bit audacious when one considers
the (somewhat) analogous situation of a smooth action of a compact Lie group
K on R". Here there are non-linearizable actions, in fact, often there are ac-
tions without any fixed points (e.g. if K is connected, non-abelian [Br, 1.8.4]).
However, if dimR”/K < 2, then the action is linearizable [Br, IV.8.5], which
leads us to focus on actions of G where the “orbit space” X /G (see §1) has low
dimension.
We concentrate on the following

(0.1) ProBLEM (Luna). Suppose that dim X /G = 1. Is the G-action on X
linearizable?

Linearizability in the case dim X/G = 0 is due to Luna [Lu]. Luna outlined
an attack on the problem in 1981 (see (2.2) below), which has been our guide.

At the time of the Montreal conference (August, 1988) we only knew of positive
results. Since then we have discovered non-linearizable actions (see [S]) which are
intimately connected with G-vector bundles. This paper describes the techniques
which are used to compute the relevant moduli spaces of G-actions on X (see
§3). We describe when these moduli spaces are trivial, i. e. when G-actions are
linearizable. We also present some examples of non-trivial moduli (see [S] for
more details).

The easiest results to state at this point are the following.
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(0.2) THEOREM. Suppose that dimX/G = 1 and that one of the following
conditions holds:

(1) G acts semifreely on X.

(2) G° is simple.

(3) G is a torus.

(4) dimX < 3.
Then the action is linearizable.

We say that G acts semifreely if every closed orbit is either a fixed point '

or isomorphic to G (i.e. has trivial isotropy group). Linearization for torus
actions with codimension one orbits is due to Bialynicki-Birula [Bb], while the
generalization to the case of a one-dimensional quotient is due to Kraft and Luna
(unpublished).

(0.3) THEOREM. (1) There is a non-linearizable action of Oz xC* on A* with

one-dimensional quotient which remains non-linearizable when restricted to Os.

(2) There is a non-linearizable action of SL, XC* on A7 with one-dimensional
quotient which remains non-linearizable when restricted to SLy.

(0.4) We thank D. Luna for generously sharing his ideas and notes on the lin-
earization problem. We thank J.-P. Serre for timely help concerning Galois

cohomology.

§ 1. The Quotient Morphism

(1.0) For the moment, let X be an arbitrary affine G-variety. Then the algebra
O(X)C of invariant polynomial functions on X is finitely generated (see [Kr,
11.3.2]). Let X//G denote the corresponding affine variety, and let 7x,¢ : X —
X//G be the morphism corresponding to the inclusion O(X )¢ C O(X).

(1.1) ProposITION (see [Kr,11.3.2]). (1) Im7x ¢ = X/G.
(2) 7x,G separates disjoint closed G-invariant algebraic subsets of X.
(3) Every orbit contains a unique closed orbit in its closure, and Tx g sets up
a bijection between the closed orbits in X and the points of X /G.

(1.2) ProrosiTioN ([Lu]). Let X be a smooth affine G-variety. Then there
is a finite stratification XJG = |J Z; where the Z; are locally closed smooth
subvarieties with the following properties:
(1) If Gz is closed and 7x,c(z) € Z;, then the isotropy group G is conjugate
to a fixed reductive subgroup H; of G.
(2) The morphism X; := 7~Y(Z;) — Z; is an étale G-fibration.
(3) IfZ;NZ; #£ 0, then H; is conjugate to a subgroup of H;.

In (2), the fibration may not be locally trivial in the Zariski topology, but it
is complex analytically locally trivial in the usual Hausdorff topology. If X /G
is irreducible (e.g. X is irreducible), then one of the strata Z; must be open and
dense. We call this the principal stratum and the corresponding isotropy groups
are called principal. We call the stratification by the Z; the Luna stratification

of X/G.
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(1.3) THEOREM (Luna). Let (X,G) be as in (0.1). Then

(1) X/ G is isomorphic to the affine line A.

(2) Either X¢ ~ XJG ~A, or

(3) X6 = {zo} is a single point, and 7x,c(Zo) and its complement are the
Luna strata of X//G.

The main tool used to prove (1.3) is the Leray spectral sequence of 7x g.
In [KPR] part (1) is proved only assuming that dim X//G = 1 and that X is
smooth and acyclic (i.e. has the Z-homology of a point).

¥n case X% ~ A the action is fiz-pointed, i.e. all the closed orbits are fixed
points. It then follows from work of Kraft or Bass-Haboush [BH] that X ~ AxV
where G acts trivially on A and V is a representation of G with o(V)¢ =cC.

(1.4) From now on we concentrate on the case where X = {z0}. Let V =T, X
with its canonical linear G-action. Clearly, if (X, Q) is linearizable, thenztc':he
corresponding representation is (V,G) ! It follows from Luna’s slice theorem
[Lu] that dim V//G = dim X /G = 1, hence V//G ~ A. From now on we identify
X//G and V//G with A, and we arrange that 7v,(0) = 7x,¢(z0) = 0 € A.

(1.5) REMARK: Let H be a principal isotropy group of (V,G), and let N denote

- Ng(H)/H. Then the representation (VH, N) is semifree, and we can show that

).( H is N-isomorphic to VH. Now every closed orbit in X intersects X in a
smgle closed N-orbit, thus, roughly, our N-isomorphism of X¥ with V¥ is a
G-isomorphism of the closed orbits of X and V. Theorem (0.3) shows that, in
general, one cannot extend the isomorphism over the non-closed orbits. ’

§ 2. Isomorphisms

(2.0)¢ Let A denote A\ {0}, so that O(A) = C[t,t71], where O(A) = C[t]. Let A
and A, respectively, correspond to the algebras C[t]] (formal power series) and
C((#)) (quotient field of C[[t]]). Set X := X xa A. Then O(X) = O(X) ®o(Aa)
O(A), and AX is the completion of X along the zero fiber 73';(0). Define X, X ,
v, V and V analogously. Note that X = }}G(A) = X \ 7% ¢(0), and similarly
for V. ’
(2.1) ProPoSITION. Suppose:

(1) There are G-isomorphisms ¢ and ¢ such that the following diagrams

commute )
N
S S N
A A A A

where the vertical maps are induced by Tx,g and Ty .
(2) The morphisms ¢ and ¢ induce the same isomorphism of )2 and I}
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Then X is G-isomorphic to V.

ProOF: Note that O(A) N O(A) = O(A) (intersecting inside O(A)). 1t is au-
tomatic that 7x ¢ : X — A is flat, and it follows that O(X) N o(X) = 0(X),
and similarly for @(V). An easy argument then shows that ¢* (or ¢*) induces
a G-isomorphism of O(V) and O(X). 1

(2.2) The proposition above gives the broad outline of Luna’s plan to establish

linearizability. The existence of the isomorphism ¢ is an immediate consequence .

of Luna’s slice theorem. In the rest of this section we outline how to show the
existence of ¢. In general, one cannot arrange for (2.1.2) to hold.
(2.3) Recall that by (1.2) and (1.3), X — A and V — A are étale G-fiber bun-
dles. Their fibers are G-isomorphic (slice theorem). Let F' = 7r"})1G(1) o~ W}?G(l)
denote the fiber, and let L = Autg(F) denote the group of G-automorphisms
of F. Then one can show that L is a linear algebraic group, and X — A and
V — A correspond to principal .L-bundl_es P and Q, respectively, over A. As
usual, P ~ @ if and only if X ~V over A. :
We are able to show the following:

(2.4) THEOREM. Let L be a linear algebraic group, and let P and Q be principal
L-bundles over A (in an étale sense). Then
(1) P and Q become trivial over a finite cyclic cover of A.
(2) P ~ Q if and only if P/L° ~ Q/L°, where L° denotes the identity
component of L.

Note that P/L° and Q/L° are principal L/L°-bundles, where L/ LY is a finite
group A. Now two principal A-bundles over A are isomorphic if and only if
they are topologically isomorphic. Thus (2) above implies that the algebraic and
topological classifications of principal L-bundles over A are the same.

(2.5) COROLLARY. X and V are isomorphic G-fiber bundles.

PROOF: Luna’s slice theorem implies that X and V are complex a.na:lytically
isomorphic over a small neighborhood of 0 € A. Tt follows easily that X and V
are topologically (hence algebraically) isomorphic. 1

The proof of the main result above, theorem (2.4), requires techniques from
the theories of group schemes and Galois cohomology. Using results of Steinberg
[St] on group schemes over curves we are able to reduce to the case where L isa
torus. We then establish the existence of a finite cover as in (2.4.1). Let I denote
the corresponding Galois group. Then (2.4.2) can be translated into statements
about the vanishing of I'-cohomology groups with values in T-modules which, as
abelian groups, are several copies of C[t,t‘l]. We compute that the requisite

cohomology groups vanish.

§ 3. The Moduli Space

(3.0) As remarked following theorem (1.3), we can establish everything so far
if we replace “X = A®” by “X is smooth and acyclic,” which we do from now
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on. We fix V (where, of i = i i
o i X,S‘( e, of course, dim V/G = 1), and consider the possible corre-
(31) Let 2 denote_ the group of G-isomorphisms of I} which induce the identity
O}I: A, and define 2 and}’i similarly. Note that 2 is (the opposite group to)
the group of G- and O(A)-automorphi / 3
' phisms of O(V) = O
similarly for 2 and 2. V) V) Bow O, mnd
. Lft X, ¢ and ¢ be as in (2.1.1). Then the composition ¢ := ¢ o @71 lies
in Ql.. I\Tow ¢ is only well-defined up to composition with an element & € A
and similarly for ¢. Thus the double coset of ¢ = ¢~ in Ql(A)\Ql(A)/Ql(Ii) is’
well-defined, and we denote it by [¢ : Y i
, and we, y [p(X)]. W ) i

M Ay vt [e(X)] | e say that an element o € A(A) is
(32) ‘Let M VA denote the sét of isomorphism classes of contractible affine G-
varieties X with fixed quotient mapping 7 : X — A ~ X /G such that

(1) X€ = {z} is a single fixed point,

(2) T;,X is G-isomorphic with V,

(3) 7(’(1‘0) =0€A.
(If ¢ is an allowable isomorphi ieti i

: ; phism of G-varieties X, X’ satisfyin iti

then ¢ induces the identity on A). Let My be defined in the};arieorv;;c:djl\tfions,
except that we do not fix an isomorphism of X/G with A. Clearly, My is‘;’l‘l‘é

quotient of My, a by an action of C*, and is trivial (i t) 3
if My is trivial, ) My is trivial (i.e. a point) if and only

(()333()1 LECI;/IMAt. Let (5;1 € A. Then t;here is a Zariski open subset U C A containing
a G-automorphism & of #=1(U NA) inducing the i ity o \ whi
is in the same double coset as a. ' ) 5 the dentily on A which

(3.4) THEOREM. The correspondence

Mya 2 aANAAY/AR), X — [p(X)]

is a bijection.

I:RO(?F OF (3.4): One easily generalizes (2.1) to show that [(] is injective. Given
;z( as in the lemma, one uses it to identify V and V over I;' The resulting space
is an affine G-variety, smooth and contractible, which realizes &. |

(3.5) REMARK: W .
o A?‘, e know of no examplesvwhere we obtain an X not isomorphic

(3.6) We now consider the structure of the double coset space of (3.4). We
bfagm by making the groups 9 and 2 more explicit: Since O(V)€ is graded of
dimension 1, we may assume that 7 = my,¢ : V — A is homogeneous, say of
degree d. As before, set F' = 771(1) and L = Autg(F). Let T denote ’theydth
;‘otots of unity, and let B = Spec C[s] denote another copy of the affine line. We
et T act on B by: (y,b) — by~1, and we identify the quotient B/T' with A by
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the embedding O(R) = C[t] < C[s] = O(B), sending ¢ into s?. Define B, etc. as
usual. Then the canonical map

p:BxTF =V, [bv]—bv

is an isomorphism, where B xT F is the quotient of B x F by the a?tion: 7(b,.v) =
(by"Lyv); y €T, b € B,veF. Moreover, p is an_isomorphlém.over A via
7 :V — A and the map [b,v] — b of B xT F' to A. The principal bundle
P associated to V is easily seen to be B xT L where I' C L acts on L by left
multiplication. We then get

(3.7) ProposiTioN (Luna). The map p induces isomorphisms

(1) A~ L(B)",

(2) A~ L(B)T.
Here L(B), etc. denotes the group of morphisms from BtolL, etc.. I‘ acts on
L(B) by: (y&)(b) = ya(by)y~!, where & € L(B), b € B, ¥ € T; and similarly for
L(é) Note that the action of T' on L(B), etc. arises from the action of ' on L

as automorphisms by conjugation. A R
Of course, we can also consider L(B) and L(B)T. Let L(B), denote the mor-

phisms & : B — L such that & — I vanishes to order r at 0 € B, where I is the
identity element of L and r € Z*+.

We can prove: -
(3.8) PrOPOSITION. Let L be any linear algebraic group with an action by T'
as automorphisms. Then

L(B)T = L(B)FL(B)T.

The proof of the proposition again involves shO\'rving the vanishing of a I'-
cohomology group. The case I' = {1} was communicated to us by Luna. Note
that L(B)L = L°(B). ' .

Unfortunately, 2 # L(B)P, in general. In fact, since L}lS‘ the aut.omorphlsm
group of the general fiber of 7, while 2 consists of autom(?r})hlsnls which preserve
the zero fiber, a strong connection is somewhat surprising. We have shown,

however: ) )
(3.9) PrOPOSITION. Via p, consider A as a subgroup of L(B)' ~ A. Then

(1) There is an r > 0 such that L(B)L C A
(2) 41 C LB).

Here ¥, C 4 C Aut(V) denotes those automorphisms whose differential at 0 € V/
is the identity. A
(3.10) DEFINITION: We say that L has the approzimation property if L(B)Y C
L(B)TL(B)L for all r > 0.

Obviously, we have:
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(3.11) PrROPOSITION. If L has the approximation property, then My is trivial.

It is easy to see that a torus does not have the approximation property, but
this is more or less the only example. '
We can show:

(3.12) THEOREM. Suppose that the radical and unipotent radical of L coincide
(e.g. L° is semisimple). Then L has the approximation property.

(8.13) Let L' denote the subgroup of L° generated by a maximal connected
semisimple subgroup and the unipotent radical. Then L’ is normal in L, hence
I-stable, and L°/L’ is our problematic torus. Let [ (resp. I') denote the Lie
algebra of L (resp. L').

(3.14) Let D be a derivation of O(V), i.e. a polynomial vector field. We say
that D has degree p if D maps polynomials of degree ¢ to polynomials of degree
p+ g for all q.

Suppose that D is G-invariant and annihilates 7. Then D induces a G-
derivation of O(F'), denoted D|r, and D|r € L.

(3.15) DEFINITION: We say that (V,G) is rigid if there are G-invariant deriva-
tions Dy,..., D, of degree < d = deg, which annihilate m, such that {D;|p}
spans [/l

Using the exponential map we can show:

(3.16) TueorEM. (1) (V,G) is rigid if and only if the canonical morphism
from 2, to (L°/L')(B)Y is surjective.
(2) (V,G) is rigid if and only if My is trivial.
(3) In general, there is a bijection between M v,a and the quotient of an affine
space A" by a linear action of T'.

(3.17) Consider the case where (V,G) is semifree and G is connected. Then
F ~Gx~L,and L/L' is the image of the center Z of G. The action of Z on F

- is the restriction of its linear action on V, so clearly (V,G) is rigid, by (3.16.1).

Theorem (0.2) is a consequence of the following more general result:

(3.18) THEOREM. (V,G) is rigid in the following cases:
(1) (V,G°) is rigid and G/G° acts faithfully on VJG® ~ A.
(2) G° is simple.
(3) The principal isotropy group H of (V,G) is central in G.
(4) (V,G°) is self dual.
(5) dimV < 3.

(3.19) There are many examples where (V,G) is not rigid: Let V,G)=" o
V2,G' x C*) where dimV, /G’ = 1 and C* acts trivially on V; and by scalar
multiplication on V3. Then VJG ~ V)G’ ~ A. We suppose that My, is
trivial. Let VECg:(V4, V2) denote the isomorphism classes of G’-vector bundles
with base V; and fiber V; at 0 € V4. (The total spaces of these bundles are
isomorphic to affine space by the work of Quillen and Suslin (solution to the
Serre conjecture)). Then VECg:(V4,V3) is isomorphic to an affine space A",
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The group I' corresponding to (V1,G") (as in (3.6)) lies in GL(Vl)G', hence
operates on VECg(V1,V2) = A" by pull-back. The I"-action on A" is linear,

and Myva =~ Ar/T.
(3.20) THEOREM. Let (V,G)=("1® V3,G' x C*) and r be as above.
(1) Let G' = SLy, Vi = Ry, and Vo = Rm, m 2 1, where Rm denotes the

SLy-module of binary forms of degree m. Then t = [(m—1)?/4]. In

particular, there is a non-linearizable action of SLz xC* on A7 (One can

even show that the SL,-action is not linearizable).

(2) Let G =0,=0C"% /2, V1 = W, and Vo = W, m 2 1, where Wn,
is the irreducible representation of dimension 2 of O2 with C*-weights m
and —m. Thenr =m—1. In particular, there is a non-linearizable action

of Oy xC* on A4,

(3) LetG' = 0,, V1 = W, and Vo = W,
The corresponding non-linearizable actions
linearizable as Q,-actions.

132

m > 1, modd. Thenr = (m-1)/2.
of O4 xC* on A* are also non-
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quivariant Completions and Tensor Product
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