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INTRODUCTION

The present notes are a more or less faithful reproduction of the
lectures given at the Workshop on "Representations of Algebras"
in Puebla, Mexico, 1980. The aim of this series of lectures was
to describe some geometric methods which can be and have been
used in representation theory, in particular methods from alge-
braic transformation groups and invariant theory. It turns out
that from this geometric point of view there arise many questions
and problems which seem to be quite interesting and which have
not yet been studied in detail. On the other hand much material
from representation theory can be understood in this geometric

way and provides us with a big amount of exciting examples.

Rather than developing a general theory we have preferred to
work out some of these examples, partly well known and elemen-
tary, in order to introduce the subject and to explain the main
ideas. However it soon becomes clear that for the more advanced
examples we also need more theory, some general facts from alge-

braic geometry, transformation groups and invariant theory.

So we start in the first chapter by describing three examples:
"Conjugacy classes of matrices", "Modules over €{X,Y}" and
"Completely reachable pairs of matrices". (The last example
originates from system and control theory.) Already here we
sometimes use notations and facts from the following chapter,
where we develop the foundations of algebraic geometry, trans-
formation groups and invariant theory, again using many examples
mainly from representation theory. Because of time constraints
we include in this part only a few sample proofs, to convey
some of the flavor of the subject. In the last chapter as an
application of the methods we present a proof of a result of
Gabriel which states that "finite representation type is open".
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In order to explain the main ideas and also for convenience of
the reader it seemed to us reasonable to concentrate on the most
geometric situation, i.e. we are going to work over the field €
of complex numbers. Of course we could replace @ by any other
algebraically closed field of characteristic zero. With slight
modifications all results also hold in positive characteristic,
but the proofs become more complicated and more technical. (We

have to use Mumford’s conjecture proved by Haboush.)

Finally I would like to thank Mrs. R. Wegmann for the perfect
typing of the manuscript.
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Chapter I SOME EXAMPLES

In the first chapter we describe three examples: "Conjugacy
classes of matrices", "Modules over €{X,Y}" and "Completely
reachable pairs of matrices". In all three cases we have an im-
portant classification problem which we want to attack by geome-
tric methods. It turns out that even in the first example where
a complete classification is known this geometric point of view
provides us with a deeper insight into the nature of the problem
and a better understanding of some phenomena and also gives rise

to new developments and quite interesting questions.

We have tried to keep this chapter as elementary as possible. As
a consequence we often use ad hoc arguments in order to convince
the reader, hoping that all this will become clear in the follow-

ing chapter where we develop the general technical tools.
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1 Conjugacy “lasses of Matrices

1.1 Let R := c(x] be the polynomal ring in one variable.

An R-module M is the same thing as a vectorspace V to-

gether with an endomorphism A € End(V). If we fix a finite

dimensional vectorspace V we may consider the set modR v
’

of all R-modules with underlying vectorspace V ;, i.e. the

set of all R-module structures on V . By what we said above

we have in a canonical way

mOdR,V 3 End(V), M® X,. (1)

In addition two R-modules M,N €modR y are isomorphic if and
’
only if the corresponding endomorphisms xM and XN are con-

jugate in End(V) (i.e. there is a g € GL(V) such that
e -1
Xemg 29)

1.2 We may express this in a slightly different way. The group

GL(V) acts on modR v by "transport of structure": If
’
ME modR v and g € End(V) there is a unique R-module struc-
’

ture 9M on V such that g : M - 9M is a R-module homomor-

phism. (Clearly this is the action obtained via the isomorphism

(1) from the adjoint action Y b ng_1 of GL(V) on End(V).)

Now two R-modules M,N€modR v are isomorphic if and only if
’

they belong to the same orbit under GL(V).

1.3 In case V = a” we simply write modR n and identify this
= A ’

set with Mn(E) , the set of nxn-matrices.
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An R-module M €modR'V is semisimple if and only if the corre-
sponding endomorphism XM is semisimple i.e. xM is a
diagonal matrix with respect to a suitable basis of V .
Similarly M is indecomposable if it corresponds to a matrix

of the form

More generally the decomposition of an R-module M into in-
decomposable direct factors corresponds to the block decompo-
sition of a matrix in Jordan normal form. (It's well known that
in both cases the factors are uniquely determined but not the

decomposition.)

1.4 We see now that any R-module M of dimension n uniquely

determines an bit
or. CM in modR,n (and also in modR'v if

dim V = n) and we have CM = C if and only if the R-modules

N

M and N are isomorphic.

Therefore the set of isomorphism classes of R-modules of dimen-

sion n is given by the "orbit space"
modR'n VA GLn(c)z {conjugacy classes in Mn(m)) . (2)

A conjugacy class is not necessarily closed. E.g. (8 é) is
: 0 ¢
conjugate to (o O) for all ¢ # O, hence the closure of the

o1
00

implies that the orbit space modR,n / GLn(c) has a very un-

conjugacy class of ( ) contains the zero matrix. This

pleasant topological structure: it contains non closed points!
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1.5 There is another way to attack this "geometric" classifi-

cation problem, using invariant functions. Consider the cha-

racteristic polynomial of a matrix A € Mn(¢):

R -, et (3)

1

det(t-1 -A) = t" +

i

™Mz

oi(A) is the ith elementary symmetric function of the eigen-

values of A. We see from the expression above that it depends
polynomially on the entries of the matrix A, hence oy is an

invariant polynomial function on Mn(m) (i.e. it is constant on

the conjugacy classes).

We use these functions to define the following map:

x(M) := (al(XM),02(XM),...,an(XM)).

It is easy to see that = is surjective.Since = (M) deter-
mines the characteristic polynomial of XM, hence its eigen-
values and their multiplicities, each fibre of =« contains

exactly one orbit consisting in semisimple modules (i.e. the

orbit corresponding to the conjugacy class of a diagonal matrix
with the given eigenvalues). Furthermore u-1(x) is a single

orbit for "almost all" x € C". More precisely the discrimi-

nant of the polynomial (3) defines a hypersurface D < ¢n,

i

D := {(a1,...,an)ltn+ I(—1)laitn_ has a multiple root} ,

and 1_1(x) is a single orbit if (and only if) x belongs to

the dense open set c® -p of c".

On the other hand 1-1(0) is the union of the orbits CM of

R-modules M of the form
S ny s
M=® R/X R, In =n.
i=1 i=
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Clearly M is determined up to isomorphism by the (unordered)
tupel (n1,n2,...,ns). It follows that the orbits in 1-1(0)
are in 1-1 correspondence with the partitions of n .

1

A similar argument shows that in any fibre x ' (x) the

number of orbits is finite. Furthermore t—1(x) always con-

tains a dense orbit.

Remark: One can show that =« : mod - " is “the best

R,n
continous approximation" to the orbit space in the following

sense: Every continuous invariant function on modR . factors
’

through =«

1.6 At this point we may ask the following question:

Given an R-module M and its orbit CM (— modR e what is the
’

meaning, in module theoretic terms, of the closure E; ?

To understand this we need the concept of an algebraic family

(MX}AES of R-moduks. We will give a precise definition in the
next chapter (II,2.4).

The idea is that all Mx have the same underlying vector-
space and that the module structure depends algebraically on

A € S, S a subvariety of some .
n

Example: A = (A;,...,A ) €€%, £ := x®-% 2 X" 1eR; then
1 n A i=1 i
My = R/f\R, A € ¢n, is an algebraic family of R-modules.

(The image of {1,x,x2,...,xn’1} R in M, is a basis

for all ); with respect to this basis we have
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which depends algebraically on A. )

7 Definition: An R-module N is called a degeneration of an

3
R-module M , if there is an algebraic family (M)‘))‘ES of
R-modules such that MX ~« N for some A€ S and Mx « M for

almost all A € S.

(Here "almost all" means for all A in a dense subset of S.)

We shortly write N < M for this ordering.

Example: If M'c M is a submodule then M' @ M/M' is a
degeneration of M. (Consider MIT] := C¢[TIJ® M and the submodule
M := T-M[T] + M'[T] < M[T]. Define

M, := M/(r-0)M , A € €.

Then {M,} is an algebraic family of R-modules,

ATAET

M°~M'@M/M' and M, =M for A$ 0%)

The following proposition gives a first answer to the question

1.6 . It easily follows from the definitions (cf. II.3.5).

Proposition: Let M,N be two R-modules of the same dimension

and CM ’ CN the corresponding orbits. Then N is a degeneration
of M if and only if CN S E;. In particular N <M and M <N

implies that N and M are isomorphic.

As a consequence we find:
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Corollary: a) An R-module M 4is semisimple if and only if C,

is closed.

b) Every R-module M has a semisimple degeneration,

namely the direct sum of its Jordan-H&lder factors.

( b) follows by induction from the example above. For a) we
first remark that E; is contained in the fibre n-l(x(CM)),
which contains exactly one semisimple orbit by 1.5 . Using b)

and the second part of the proposition this implies the claim.)

8 The degeneration problem can be solved in a purely combi-
natonial way. We describe it for the R-moduls M with nilpotent

XM ; the general case can easely be deduced from this.

Proposition: If N and M are two R-modules of the same
M then N <M if and only

dimension with nilpotent XN and X

i i
if rk Xy < rk X, for all i .

(cf£. [H1],[KP1])

=

-9 Example: Let A be a finite dimensional commutative algebra
generated by one element, i.e. A = R/fR with some polynomial

f of positive degree. Then the set modA’V of A-module struc-
tures on V becomes in a natural way a closed subset of

modR,v H

mOdA,V = (M€ mOdR,V | £-M = 0}

~ {YEEndV | £(Y)= 0} € End V

If k denotes the number of simple A-modules (i.e. the number of

n+k -1

= ) isomorphism

maximal ideals of A) there exists exactly (

classes of semisimple A-modules of dimension n
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n+k -1

- ) connected components:

This implies that modA has (
n

Two A-modules belong to the same component if and only if they

have the same Jordan-H6lder factors (counted with multiplicity).

It is not hard to see that each component is the closure of an

orbit. It follows therefore from recent results on the geometry

of conjugacy classes([KP1],[PK]) that modA = is a normal
’

variety.

B.g. for A = R/X3R we have one simple A-module and three
indecomposable A-modules (up to isomorphism), of dimensions one,
two and three.

The following diagram gives
the isomorphism classes of
A-modules of dimension 7 {3;3,1)

and their degenerations (3;2.:2)

(the symbol describes the (3,2,1,

1)
decomposition into (2:2:2:1) .//// \\\\. (3,14)
\42.13)

indecomposables, the dege- ’

! (2.1°)
! a’y

nerations go from top to

the bottom;cf. [H1]).

10 For any M € mod we have
. R,V

Endp (M) = {g € End (V) IgXy = ng} 5

GL (V) XM of XM is the group

of units of the endomorphismring EndR(M), and so

In particular the stabilizer Stab

X

dim EndR(M) = dim StabGL(V) M

ol IT. 2.8 ). On the other hand the orbit CM is isomorphic

to the conjugacy class of XM, hence to the homogeneous space
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GL (V) /Stab X, which implies the following result.

GL(V) "M

Lemma: For any R-moduk¥e M of dimension n we have

: : st
dim EndR(M) + dim CM =n .

Remark: For any strict degeneration N < M (i.e. N <M and

N # M) we have dim Endp (N) > dim Endp (M) .

(This follows from the fact that CN is contained in the

boundary acM = CM * CM which is a closed subset of CM of

strictly smaller dimension, cf. II.2.6.)

Example: a)Let M be a semisimple module of dimension n ,

t n
Mx@® (R/(X-Ai)R) 3 with pairwise different Ay and
i=1

t
X n; = n. We find
i=1
t
EndR(M) o E Mn (c),
i=1
hence
g IE s
dim CM = n" -3 ny
i=1
b)For M ~ R/X"R we find dim End M = n and dim Cy = n’ - n.

1.11 In order to get a general dimension formula let us recall
that every finite dimensional R-module M can be written in the
form
s
M =~ R/fiR (5)
=1

b &

with f for i=1,2,...,s-1. The polynomials fi are

i+1'fi
uniquely determined (up to a constant factor) and are called the

invariant factors of M (or of Xyi f1 is the minimal poly-

nomial of XM).
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The degrees p; = deg f1 form a partition
By = (p1,p2,...,ps) of n (i.e. Py 2 P, 2 ... 2 Pgs % py = n)s
The decomposition (5) implies the following dimension formula:

2

= ) = ” 6
dim EndR(M) Z_min(pi,pj) ; qJ (6)

i,J J

where (q1,...,qt) = ﬁM is the dual partition to Py

(i.e. qy = #{ilp; 2 3}

In the example 1.10a we may assume ng 2n, 2 ... 2n0g; then

the invariant factors fj’ j=1,2,...,n1, are given by

£, =

< S0 .,
Iy

r+1 p

nan

1(x-xi) if "n

hence (n1,...,nt) is the dual partition -§M'

1.12 Let us come back now to the orbit space mOdR,n / GLn and
the problem of a geometric description and a parametrization of
the isomorphism classes.

We want to decompose the space modR'n into subsets consisting
in orbits of a fixed dimension. For this purpose we use the
partition Py defined by the invariant factors of the matrix

XM.(1.11)

For any Partition p of n, we put
s2 := {M € mOdR,n | By = p} .

This subsets are called the sheets of modR ne They define a
’

finite stratification of modR - into locally closed subsets
’

consisting in orbits of a fixed dimension. In particular all

orbits in a given sheet S are closed, hence we may hope that

the orbit space S/GLn(G) has a nice structure.

1l
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In the following proposition we collect the main results in

this direction (cf. [K], [Pe]l,[Pe']).

Proposition: a) The sheets are the connected components of

the subsets

@ ,_ :
modR'n := (M € modRIn | dim EndR(M) = d} .

b) Every sheet is a smooth submanifold of modR e

’

c) The orbit space %E/GLn is, in a natural way,

an affine space of dimension Pq-

Summary:

The "geometric" classification of finite dimensional R-modules

rises two problems, a "vertical" one - degenerations of modu-

les and orbit closures - and a "horizontal" one - description

of the sheets and parametrization. It will turn out that the

same situation occurs in a much more general setting (e.qg.
for any finitely generated algebra R or for representations
of quivers). In the present situation where R = C[X] the
two problems are solved; here we have a good knowledge of the

geometry of finite dimensional R-modules.



Problems:

1) If M is an R-module and N s M a degeneration, is it true

that there is a filtration

M=M >MS... DM =0
S
& ?
s. t N i(:)1 My o/ My

2) Assume N = P@ON' s M = P®M'. Then N' s M' and conversely.

3) If N £ M, the number of indecomposable direct factors of N

is greater or equal than that of M.
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Degenerations of conjugacy classes and the geometry of closures of
conjugacy classes are studied in [H1], [KP1] and [PK]. In develop-
ment of an idea of Dixmier the notion of a sheet is introduced in
[BK]. The description of the sheets in Mn(a), their geometry and
their parametrization can be found in (K] and [(P1], [P2].



2. Representations of C{X,Y}

2.1 Consider the non-commutative polynomial ring R := €{X,Y}

in two variables X and Y . It is well known that the classifi-
cation of R-modules is a hopeless problem. Nevertheless we may try
to study R-modules in a more geometric way as indicated in the

first section.
Clearly an R-module M is a vectorspace V together with a pair

s S 4 of endomorphisms of V . Hence we may identify the set

MM

modR v of R-module structures on the finite dimensional vectorspace
’

V with End(V) XEnd(V) :

modp\,v = End(V) x End (V) , MF—*(XM,YM) .

In case V = € we simply write modR N
'

Again the isomorphism classes of n-dimensional R-modules are canoni-

cally identified with the orbits of GLn(c) in modR o under the
’
obvious action (i.e. transport of structure) which corresponds to

simultaneous conijugation of GLn on Mn(c) XMn(¢) S

For small n there is some chance to obtain a complete description/
classification of the orbits, but in general this is an impossible

task. (Proof: try it!)

For n = 2 we consider the following map (given by invariant

nno
no

functions):
5
% 3 modez—* [
n(A,B) := (trA ,trB, trAB,detA,detB) .
It is not hard to see that = is surjective. In fact = is an alge-

braic quotient in the sense that any polynomial map u :modR 2-'Cm
’

T
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which is constant on the isomorphism classes factors through L

(cf. IT.5).

The zero fibre ("nullfibre") n—‘(O) consists in the origine 0

and a one-parameter family of 2-dimensional orbits CA’ A€ p1(c) '

corresponding to the modules

woe (20 (32 - ancele

It may be represented by the following picture:

2.3 There is another way to describe the zero fibre. We symbolize

A
=

Here the dot on top collects the orbits CA for A#0,» i.e. the

the modules M by
L . .
A}l B A B {
. . .
A#0, A=0 A=

and obtain the following picture: & i
il i

modules M = (A,B)€n '(0) with A # 0 # B , and the lines indicate
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the behavior of the closure of the corresponding orbit or family
of orbits (as in the example 1.9). We also remark that any module

Mx degenerates into the trivial module, i.e. E}BO (cf. 1.7 and

IX. 3.5)

4 A module M = (A,B) € mod is simple if and only if A

R,2
and B generate the algebra MZ(C) . This defines an open set

mod:igple of modR 2 - In fact the non-simple modules M = (A,B)
r ’

are defined by

(traB)2 - (trA) (trB) (tr AB) + (trA) (det B) + (trB) (detA)- 4(det A) (detB) =0

(For a proof remark that the non-simple modules are those which

can be represented by pairs of upper triangular matrices. It follows
that trAB is either equal to a1B1+ azsz or to a182 +a281 ’
where oy Tresp. 8i are the eigenvalues of A resp. B . Now

the expression (trAB-—a1B1 —aZBZ)(trAB-a162-d281) is easily
seen to be equal to the left hand side of the equation above.)

Furthermore a simple module M is completely determined (up to

isomorphism) by its invariants m (M) € cs ; its orbit CM is closed.

:igple) is an open set in Cs , namely
’
5

the complement of the hypersurface YcC defined by the equation

It follows that U := m(mod

2 2 2E ek -
x3—x1x2x3+x1x5+x2x4 4x4x5 [

and we have a canonical isomorphism

simple 2

mOdR,2 /GL2 o B | B

simple
R,2

whose fibres are orbits isomorphic to PGL2 = GLZ/C* e

More precisely 7 : mod — U is a (locally trivial) fibration
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2.5 Up to now we have only seen two types of fibres of the map
m : mod Cs , the fibre over a point of U (generic fibre), which

R72
is a single orbit isomorphic to PGL2 , and the nullfibre n_1(0)

which contains a one-parameter family of orbits. This second type

occurs also over the surface
202
F = {(2a,28,208,0°,8°)|a,BEC}CY

which is the image under w of the pairs of scalar matrices:

™ : CEXCE + F .

Over the remaining part Y-F the fibres have two components, each

one containing a dense orbit of dimension 3 .

(For a proof use the decomposition M2 = CEthé '
Mi := (A€ M2|trA.= 0} , and replace w by the map

s My XM ¢3, (A,B) +(trAB,detA,detB) .

which has the same fibre types. Furthermore we have an action of

' A
GL2 on M2XM2 H

g =($ 2) : (A,B) > (aA+YB,BA+6B)

which commutes with conjugation and induces an action on c3 with

three orbits corresponding to the three fibre types.)

2.6 The three fibre types have the following module theoretic

interpretation. The generic fibre represents the simple moduleé,
the dense orbits in the two components of the fibres over Y-F

consists in indecomposable modules with two non-isomorphic simple

factors and the family of 2-dimensional orbits in the fibres over

F corresponds to indecomposable modules with isomorphic
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1-dimensional simple factors.
227 Some of the statements above are of general nature. In parti-
simple

cular the simple modules modR 2 always form an open dense set
’

consisting in closed orbits. The orbit space

simple
U := mOdR,n /GLn
. ) i
is a smooth algebraic manifold and the projection mod:i:p € .U
’

is a locally trivial fibration with fibres =+ PGLn (ef.. [P1], or

more generally [L]). For the invariant theory of modR no e refer
’

the reader to [P2].

2.8 . On the other hand the modules which degenerate into the

trivial module, i.e. those Mémod, =~ with 0¢€ 5;' (cf. II.3.5);,
trivial module ,

form a closed set modg 2 of modR o again called the nullfibre.
’ ’

These modules can be represented by pairs of nilpotent upper trian-

gular matrices. ]This follows from Hilbert's Criterion, see I1I.4.4.)

Putting

o *
= * o= 5
N := {(6\\0) €M) and B := { (;\\*) € 6L }

we obtain the following diagram:

B U
GL_ X% N2 — mod0
n R,n

GLn/B

under the free

B TR

is the orbit space of GLn XNz
1

Here GLnxB N2

1

action of B given by b(g,(A,B)) = (gb ', (bAb_

the projection onto the first factor and u is the obvious map

!

)

(g, (A,B)) +— (gAg™ ',gBg ') .

B 2

It is easy to see that GLn X" N is a vector bundle over the flag

Yy .e. hi
variet GLn/B and that W is birational (i.e. an isomorphism

between dense open subsets) and proper (i.e. u-1(c-compact) =

= C-compact) ; such a map is sometimes called a desingularisation.

As a consequence we have that modg 5 is irreducible of dimension
’

_ 3n(n-1)
s s e

n

3G,

)

Remark: mod0 contains an interesting closed subset given by the

R,n
modules M = (A,B) with AB = BA = 0 . These modules have been
classified by Gelfand and Ponomarev [GP] ; it should be an inter-

esting task to determine the degeneration properties of these mo-

dules, in particular the number of components and the generic

structures.

Another closed subset of mod is formed by the modules

R,n

M = (A,B) with AB = BA , i.e. the modules over C[X,Y] :

{ ==
modR

modC[X,Y],n N

Not much is known about this "commuting variety" in general except

that it is irreducible (Gerstenhaber, cf. [R]).

2:9 To finish this section we give the picture of modg using
st ’

3

similar notations as in 2.3.

We see that the "commutative" part coincides with the modules of

Gelfand-Ponomarev and has two irreducible components.
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dimension
TR
wH
0 9
(7+2)

Remark: The picture contains an interesting degeneration, namely

A! >Aad , where both modules are indecomposable. (To see this
B} o' e
: B 001 010
degeneration, take the pairs ( ( 0 c) ' ( 0 0) ) for: ‘e *>0%)
0 0
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Summary:

The classification of modules over R = €{X,Y} is equivalent to
the classification of pairs of matrices under simultaneous conju-
gation and is known to be a hopeless problem. From a more geometric

point of view the "module variety" modR = of R-modules with (fixed)

'

underlying vectorspace c¢” seems to be the right object. Here the

single consisting in
'

simple modules form an open dense subset modR "

closed orbits, and the isomorphism classes of simple modules form

simple
R,n

smooth algebraic variety. On the other hand the "null-modules", i.e.

the "orbit space" mod /GLn which has the structure of a

those which degenerate into the trivial module, form an interesting
0

irreducible closed subset modR a Not much is known neither about
’
the orbit space mOGSimple/GL nor about the nullfibre mod0 =
R,n n R,n

except for small n where a complete description of the module

variety and its orbits can be obtained.

Problems:

1) Problem 1 of the first section has a negative answer for

R = €{X,Y} by remark 2.9. What about problem 2 and 3? Is a degener-
ation of a decomposable module always decomposable?

2) Describe the sheets in modR'2 and their parametrization. Give

. Determine the nullmodules in modR and
’

a description of mod
R, 4

3
their degenerations.

3) Describe the subvariety of "Gelfand-Ponomarev-modules" (cf.
remark 2.8), the number of irreducible components and the generic

structures (i.e. the type of modules which form the dense families in

the components).
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g. Completely Reachable Pairs of Matrices

The problem we are going to consider in this section arises from
system and control theory. For a more detailed investigation of the
whole subject and further references we refer the reader to the
Lecture notes [T] of A. Tannenbaum. (See also the survey article

[H] of M. Hazewinkel.)

; Consider a linear time-invariant dynamical system I given by

the differential equations

X = Bx +Au
y = Cx

where u,x,y are vector variables, u(t) € L . x(t) € c” '

y(t) € cp , and A,B,C real or complex matrices of size nxm, nxn,

PXn respectively;
L

u(t) is the input or control, y(t) the output and x(t) the

state vector at time ¢t .

Clearly the system I is determined by the tripel A,B,C of matri-

ces; we shortly write I = (A,B,C) .

2 If the system I is at the time ¢t

0

X, we obtain from elementary theory of linear differential equations

in the state

(A,B,C)

the following solution:
t i
t-tg)B (t-7)B
e( o) Xg + [ ce

i

y(t) = C Au(t)dr

We remark that the main part of the solution depends only on the

matrices CBiA ,» 1=0,1,... . This follows also directly from the
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differential equations and leads to the following definition. 3.4 Now the first result states that a c¢cr and co system is

determined up to equivalence by the input-output operators.

s "‘""""‘"“""“g

Definition: Given a system I = (A,B,C) and g€GLn we put

g5 $ Proposition: Consider two systems I and L' which define the

=1 -1
:= (gA,gBg ,Cg ) ;

same input-output operator. If I is cr and co then I' |is

two systems I' and I are called equivalent if 1I' = 9r  for
equivalent to I
some g€ GLn .
In terms of matrices this means the following. Given two tripels
Clearly equivalent systems define the same input-output operator

(A,B,C) and (A',B',C') of matrices of size nxm, nxn, pxn

respectively with CBiA = C'B'iA' for all: 1. and

u++y ; a convers of this will follow under suitable assumptions

(see 3.4 below).
rkR(A,B) = rkQ(B,C) = n , then there is gGGLn such that

=1

g g There is the important notion of reachability which comes i A' = gA, B' = gl!g_1 and C' = Cg

from the question whether a system £ reaches any state in finite For the proof we need the following result

time with a suitable input starting from the zero state. Another

% k
notion is the observability; it's related to the problem whether 2 e ] Rk(A'B) = (A,BA,...,B'A) and assume

any state can be detected from the outputs of the system. We give s Rn(A’B) AL

the definitions in terms of the matrices A,B,C . a) We have rkR, (A,B)=n for k>n-1.

b) I1f R (A,B) =R (A',B') then A =A' and B = BN

P

Definition: A system I = (A,B,C) 1is called completely reachable

® n-1
‘ (By Cayley-Hamilton we have I Bi(ImA) =z Bi(Im A) . This implies
if the matrix i=0 i=0

k.4
R(A,B) := (A,BA,BZA,...,BnA) a) since rkRk(A,B) = dini_EOB (ImA) . Now Rn(A,B) = Rn(A',B')

N 13 s N =
of size nx (n+1)m is of maximal rank (i.e. of rank n ). It is WeanE Chak A =AC mad B R R Eor Tuaeagn = AN
implies by induction BI = B' for 1i=20,1,...,n=1.

called completely observable if the matrix Bi(ImA) Bi(ImA)

c i n=1 i n
Now the claim follows since I B (ImA) =C by a).)
CB, i i=0
CB £
Q(B,C) 5o 2 ;

; ! Proof of proposition 3.4 : We have
cg” f

of size (n+1)pxn is of maximal rank. I

We shortly write cr and co respectively.
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2
CA CBA CBA v o2
Q(B,C) R(A,B) =| cBa cB’a cBa
2 3 4

CB™A CB'A CB A

hence by assumption

Q(B,C)*R(A,B) = Q(B',C")R(A",B') .

Ssince Q(B,C) and R(A,B) are of maximal rank there exists gq € GLn
with
-1 - =
Q(B',C') = Q(B,C)g ' = Q(gBg” ',cg™ )
R(A',B') = gR(A,B) = R(gA,gBg ')

Now the Lemma implies the claim.

3

6 The systems

L = (A,B,C) with fixed dimensions of input,

output and state space form a vector space

L =

:= Hn'm(c) XMn(C) XMP (c)

L
m,n,p 24}

or in coordinate-free notation

L = L(U,V,W) := Hom(U,V) x End (V) x Hom(V,W) .

Symbolically we may write:

G Sy N il i)

The group GLn (or

way :

g

The cr

LCI 1CO

states that the equivalence classes of cr

GL(V)) operates linearly on L in the usual

(A,B,C)— g(A,B,C) = (gA,gBg ',cq” ") .

and /or co systems form open subsets Tyt ' Lco,

= 1°" n1°° which are stable under GLn . The proposition 3.4

and co systems are

given by the orbit space

L

cr,co
m,n,p

/ GL

i

L

P
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we may ask for a description of this space and try to investigate

its structure.

7 In order to simplify the problem we concentrate on the

of our system, i.e. we consider the space

"input part"
L(U,V) := Hom(U,V) x End (V)

with the linear t= (gA,ng_1) ; symbolically

0

¢ ——————>

GL(U)-action g (A,B)

For the general problem we refer to the literature cited above.

First we have the following characterisation of completely reach-

able elements.

Proposition: An element o = (A,B) € L(U,V) 1is completely reachable

if and only if the stabilizer Stab := {g€GL(U) |ga=a} is

GL ()

trivial.

(One implication is easy : If o is cr then V = {BiA(U) e R |

stabilizes o , then g i = Id i
BA(U) B A (U)

other implication see [T] IV. 1.4)

, hence g = Id. For the

Remark: The stabilizer of any element € L(U,V) is connected. In

fact it is easy to see that Stab is isomorphic to an open

GL (u) ©

set of the endomorphism algebra Enda := {X€ End(V)|XB=AB,XA=0}

via the map g+rg-Id .

This shows that L(uU,v)°~F L(U,V) , i.e. the

is the open sheet in

union of orbits of maximal dimension.

3.8 We are going to give now a first description of the orbit

space L°F/GL(V) . Consider the map
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¢ : L(U,V) + Hom(u™*',v) , (a,B)~ (a,BA,...,B"2) ,

where n = dimV . By definition a is cr if and only if

¥(a) : Un+1 + V is surjective. Furthermore by Lemma 3.5b v o
L

is injective.

Using again the lemma one shows that ¥ is of maximal rank on Les

i.e. the differential (dv)a is injective for all a¢€ L°Y . This

implies that ¥ induces an isomorphism ¥v' of LY with a

locally closed subset of Sur(Un+1,V) (= the surjective linear maps

e BVC T

v s 1°F 3 25 curtt™ L) .

With respect to the obvious action of GL(V) on Hom(Un+1,V) by

"left multiplication"” A+—g* XA , the maps ¥ and ' are equi-

variant. But clearly two surjective maps A,u :U""-»v are equi-

valent under this action if and only if Ker A =Ker yu , hence the

orbit space Sur(Un+1,V)/GL(V) is canonically identified with the

n+1

Grassmann-variety of subspaces of U of co-dimension n , de-

noted by Grn(Un*1) . Thus our first structure theorem states:

Proposition (Kalman) : The orbit space L(U,V)cr/GL(V) of equi-

valence classes of completely reachable pairs of matrices is a

locally closed submanifold of dimension dimU.dimV of the Grass-

n+1

mann-variety Grn(U } .

Remark: The classification of all equivalence classes of pairs
(A,B) as above is a hopeless problem. It is therefore quite
astonishing that one obtains such a nice geometric description of

the orbit space of the open sheet of completely reachable pairs.

21

3.2 We can even obtain more precise information on the structure

of the orbit space Lcr/GL(V) . For this we consider the invariant
functions o, on End (V) introduced in 1.5, oi(B) := the ith
elementary symmetric function of the eigenvalues of B , and define

the map

m™: L(U,V) » ¢ by (A,B) — (0,(B),...,0 (B)) .

Since m is obviously constant on the equivalence classes, it in-
duces a map

T : L(u,v)T/eL(v) + ¢
The following proposition collects the main properties of this map.

(For proofs see [T] IV.4.)

Proposition: The map T is surjective, flat and projective, i.e.

the fibres are projective varieties all of the same dimension,

namely n(m-1) , where n := dimV and m := dimU . The generic

fibre is isomorphic to (Pm-1(C))n . For m = 1 the map T is an

isomorphism.

nw

10 Remark: The proposition gives a partial explanation of a

result due to Hazewinkel which ‘states the non-existence of global

canonical forms, i.e. there is no family Zt = (At'Bt) of systems
depending continuously on a parameter t and containing for every
equivalence class of completely reachable systems exactly one member.
In more geometric terms this means that the quotient map

LoEes Lcr/GL(V) has no continuous section (except for m = 1 where

it was known before). Now the proposition above implies that there

is no algebraic canonical form i.e. no algebraic section except for

m = 1 , since an affine variety cannot contain a projective variety

of positive dimension.
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Summary:

Some questions in control and system theory coming for example from
realization, base changes in state space or existence of canonical
forms of linear dynamical systems can be formulated as "matrix
problems" with respect to the linear action of GLn on pairs (A,B)
or triples (A,B,C) of matrices (given by g(A,B,C) =
(gA,qu-1,Cg_1)) . In particular it turns out that the open sheet
L' 1is formed by the completely reachable pairs, a notion coming
from system theory, and that the orbit space L'/GLn has a nice
description via Grassmannians and invariant functions. As an appli-

cation we obtain the non-existence of (algebraic) canonical forms.
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Chapter II TRANSFORMATION GROUPS AND ALGEBRAIC QUOTIENTS

In this chapter we develop the foundations of algebraic geometry,
transformation groups and invariant theory. We have tried to intro-
duce these subjects by giving examples strongly related to repre-
sentation theory, like the module variety modA,m of m-dimensional
A-modules or the variety algn of n-dimensional algebras. Because
lack of time and space it was not possible to present complete
proofs; in some cases we give an outline and indicate the main
ideas, but in general we have to refer to the literature. This is
easy in case of algebraic geometry (we recommend the excellent
textbooks of R. Hartshorne, D. Mumford and I.R. Shafarevich), but

a little problem for transformation groups and invariant theory
(the reader may consult [F], [Kr], [Mu], [Spl). It was not always
possible to avoid technical difficulties; we have tried to concen-
trate on the main points which are necessary to get a better
feeling for the examples in the first chapter and to understand

the results in the last chapter.
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1. Affine varieties

1.1 Let V be a finite dimensional vectorspace over € and denote

by ©0(V) the C-algebra of polynomial functions on V . These func-

tions are also called reqular functions on V . Since polynomials

separate points, every basis VyrVoreeedVy of V induces an iso-
morphism O(V) c[xl,xz,...,xn] , where xl,...,xn is the dual

basis to vl,...,vn .

For any subset S cB(V) we define the zero set of S ("Nullstellen-

gebilde von S") by

n<

(S) := {x€V|£f(x)=0 for all fe€s} .

Clearly we have

v(s) = V(a) = V(va)
where a := (S) is the ideal generated by S and
/a := {fEO(V)lfﬂEg for some réN} its radical. Furthermore

y(u s;) = n V(S;) and V(s'T) = V(S)U V(T)
T ier i€r= - = =

This shows that the zero sets are the closed sets in some topology

on V , the so called Zariski-topology.

1.2 Remark: In the sequel the expressions closed, open, dense,
continuous,... are always used with respect to the Zariski-topology.
In addition every subset of V will be provided with the induced
topology of the Zariski-topology. If we want to consider the usual
topology on V and its subsets we write C-closed, C-open, C-con-
tinuous,... Clearly the Zariski-topology is weaker than the C-topo-
logy; points are closed in the Zariski-topology, but the Zariski-

topology is not Hausdorff.

e}

215

1.3 Nullstellensatz (Hilbert): If a<®(V) is an ideal then

{f€0(V) [£20 on V(a)}=va .

Given a closed subset 2cV we define the reqular functions on 2

by
®(z) := {f.|z with feo(v)} .

0(z) is called the coordinate ring of 2z . Clearly O(2)+ O(V)/é

with a := {f€o(V)|£=0 on 2z} .

Definition: A pair (Y,8(Y)) of a set Y and a C-algebra O(Y)
of C-valued functions on Y is an affine variety if it is isomor-

phic to a pair (Z,08(Z)) , z2 a closed subset of a vectorspace.

As a main consequence of the Nullstellensatz we have that an affine

variety Y is completely determinded by the coordinate ring O(Y)

and that any finitely generated commutative C-algebra R without

nilpotent elements # 0 occurs in this way.

Another consequence is the following: If f€0(z) and f£(Z) # 0

for all z€Z then %EO(Z) !

Remark: For any ideal acG(Z) we put

v, (a) = V(a) := {z€z|£(2)=0 for all fe€a}.

Z

These sets form the closed sets of the Zariski-topology on 2Z .

If Z is a closed subset of some vectorspace V the Zariski-
topology coincides with the induced topology from V . A similar

argument shows that 2 has also a natural C-topology.

1.4 Example: Let A be a finitely generated (associative) C-algebra

and U a finite dimensional vectorspace. Define
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modA o = {A-module-structures on U}
{

"

{p:AxU~U | p defines an A-module-structure on U}

n

{p:A+End(U) | p a C-algebra-homomorphism}

If A is presented in the form
A = clxl,...,xm]/(pilxei)
we have a canonical identification

= m =
mOdA,U = ((Sl,...,sm)GEnd(U) | Pi(Sj)—O for all i€I} .

Clearly the conditions Pi(Sj)=0 are polynomial equations in the

coefficients of the matrices Sj , hence mod is identified with

A,U
a closed subset of End(U)m . It is easy to see that this structure

of an affine variety on mod is independent on the chosen pre-

A,U
sentation of A by generators and relations.

1.5 Let hé€o(Z) be a regular function # 0 . Define

Zh := 2-V(h) = {z€z|h(z)#0}
and consider the algebra O(Zh) of functions on Zh generated by

% and the restrictions fI , £€0(2z) .
Zy

Lemma : (Zh,o(zh)) is an affine variety and

O(Zh) ¥ 0(z) [t] /(th-1).

The open sets zh are called special open sets of Z ; they form

a basis of the topology.

Example: GLn = (Mn)dethn or more generally GL(V) = (EndV)det
is an affine variety with coordinate ring

2 1
o(GL) = ¢lxij'5€E]'

Definition: A linear algebraic group G is a closed subgroup of

R —

prp————
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some GL_ .
n

(= (< = (=
E.g. the classical groups SLn GLn ' On GLn ' Son Onr\SLn GLn,

Spn<:GLn , and all finite groups C:GLn .

1.6 Given two affine varieties Y and 2 consider the cartesian

product ¥YxZ and the algebra 6(YxZ) of functions on Y¥YxZ gener-

ated by f-g , f€0(Y) and g€0(z) , where fe+g(y,z) :=£f(y)-g(z) .

Lemma: (¥YxZ,0(YxZ)) is an affine variety and

G(YXZ) + O(Y) %O(Z) .

Example: We have O(ZxC) = 0(Z)[t] ; consider the closed subset

Y := g(th—l) < ZxC for some h€®(Z) , h#0 . Then the projection
ZxC+Z identifies Y with Zh and O(Y) = 0(2)[t]/(th-1) with
O(Zh) sl CEV DL SS)

1.7 Example: Let W be a finite dimensional vectorspace and define

algw := {associative unitary C-algebra-structures on W} .

Clearly algw may be considered as a subset of the vectorspace

bilw := {¢:WXW-W bilinear} .

Furthermore the associative algebra-structures form a closed sub-
set asswailw . Using the fact that an associative finite dimen-
sional algebra A has a unit element if and only if there are

elements a,b€A such that aA = A = Ab , one easily shows that

algw is open in assy .

Lemma: algw is an affine variety.

The affine structure is obtained in the following way:
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Take ass,xW and consider the closed subset

W
%z := {(A,w) | w is a unit element of A} .

Then the projection assg x w-'assw identifies the affine variety

Z with algw A

1.8 Definition: An affine variety 2 1is reducible, if there is a

decomposition 2 = ZlUZ2 with proper closed subsets Zic Z . Other-

wise 2 is irreducible.

Proposition: a) 2 is irreducible < 0(Z) is an integral domain

<> Every non empty open subset of Z is dense.

with irreducible

0.2
i=1"i
closed subsets zi<:z . If the decomposition is irredundant then

the Zi are the maximal irreducible subsets of 2z .

b) There is a finite decomposition 2 =

The maximal irreducible subsets Zi are called the irreducible

components of Z .

Example: If G 1is a linear algebraic group the irreducible compo-
nents are the connected components. (Multiplication by an element
g€G 1is a topological map, hence permutes the irreducible compo-
nents of G . If h€G belongs to two components, also gh belongs
to two components, and so every element of G does, which is a

contradiction.)
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o

- Morphisms

2 ; Definition: A map u:Y+Z between affine varieties is a mor-

.

phism (or a regular map or an algebraic map) if u*f := fou € G(Y)
for all f€ ®(z) . It is an isomorphism if it is bijective and its

inverse is also a morphism.

We see that u defines a C-algebra-homomorphism
n* : 0(Z) + O(Y) ;

as usual we have (cou)* = p*og* .,

Proposition: The map

?* : Mor(Y,z) - Algc(O(Z).O(Y))
is bijective.

(Here Mor denotes the set of morphisms and Algc the set of

C-algebra-homomorphisms.)

2.2 We remark that any morphism is continuous and also C-continuous.

In fact one easily proves the following result.

Proposition: Let Yczcn and Z<:cm be closed subsets and u:Y+Z

a map. Then u is a morphism if and only if there are polynomials

uiE c[x1,...,xn1 ¢ 1= 1,...,m; such that

uly) = (up(¥),eeeiup(y)) for all y = (y,...,y)€¥ce” .

The following proposition describes images and invers images under

morphisms.

Proposition: et u:Y+*Z be a morphism.
a) If . 2' =V

(a) then u_l(Z')= V(u*(a)) .

b) If ¥' =V,(b) then P(¥) =y, (u (b)) .
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3 Examples: a) The product Y x2Z of two affine varieties has

the usual universal property: The two projections pry and pr,

are morphisms and for any two morphisms u:X+Y and p:X+Z the

map (u,p) : X+¥x2Z , x—(u(x),p(x)) , is also a morphism.

b) Notations of 1.4: If U=U'®U" is a direct sum we have a
canonical morphism

mod x mod

A, U PO L e

/U
given by (M' ,M")+>M'e®M"
c) For any linear algebraic group G the multiplication GXG+G

and the inverse G*G are morphisms.

This example leads to the following definition.

Definition: An affine variety G with a group structure is an
algebraic group if the multiplication GxG*G and the inverse G-G

both are morphisms.

Remark: One can show that every algebraic groﬁp is isomorphic to

a linear algebraic group.

2.4 We consider again the "module-variety" modA U 1.4) . Lat
b e ’

Z be an affine variety.

Definition: An indexed set of A-modules Mze mod

M) zez AU
is called an algebraic family of A-modules if for any a€ A the

map Z-+End(U) , z+ a-IdM , is a morphism.
z

Remark: If u: Z-+mod is a morphism then (u(z))zez is an

A,U

algebraic family. Conversely if (Mz) is an algebraic family

z€2
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AU the map Z-*modA,U ¢ T Mz , is a mor-

phism. This shows that modA U is in a certain sense the universal
' e

of A-modules MZE mod

family of A-modules of dimension dimU .

2.5 Definition: Given two A-modules M and N we call N a

degeneration of M if there is an algebraic family (Mz)zez of
A-modules in modA U such that Mz:;M on an open dense set of 2
’

and Mz,; N for some z'€Z .

We simply write N<M in this case.

Remark: We will see in the next section that "<" defines an
ordering on the isomorphism classes of A-modules.

The following lemma shows that any degeneration can be obtained

along an irreducible curve i.e. we may assume that 2 1is irreducible

of dimension 1 (cf. 2.6).

Lemma: Any two points on an irreducible affine variety can be

connected by an irreducible curve.

o

6 If Z is an irreducible variety we denote by K(Z) the field

of fractions of ©6(Z) . We call K(Z) the field of rational func-

tions on 2 .

Remark: The elements of K(Z) may be regarded as "functions de-

P
q

with p,gq€ 0(Z) then r is a well defined function on the dense

fined almost everywhere on 2 ". In fact if reK(z2) , r =

open set Z - V(gq) of 2 .

Definition: The transcendence degree of K(Z) over € is the
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dimension of 2 :
dimZ := trdegK(z) .

If 2 is reducible and 2 = gzi the decomposition into irredu-

cible components we put

~

dimZ := Max dim 2
i 1

In addition we define the local dimension in a point z €2 by

dimzz := Max dim 2

(i
Ziaz

Examples: dimc® = n .

dimZz =0 < Z is a finite set .

A variety of dimension 1 resp. 2 is called a curve resp. a surface.

Lemma: If 2z is irreducible and YcZ closed, Y # Z , then

dimY <dim 2 .

2.7 The following is the main result on dimensions of fibres of a

morphism.

Proposition: Let wu:Y+Z be a dominant morphism between irreducible

affine varieties (i.e. p(Y) =2 ) . Then for all z€Z and every

irreducible component C of u-1(z) we have

dimC > dimY - dimz

with equality on a dense open set of 2 .

Remark: A special case of the result above is Krull's "Hauptideal-
satz" : Given regular functions f1,...,ft on a vectorspace V
and an irreducible component C of the zero set ¥(fl""’ft)
(assumed to be non empty) we have

dimC > dimV - t
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3. Group actions and orbit spaces

For any algebraic group G we denote by e € G the unit element.

3.1 Definition: An action of an algebraic group G on an affine

variety 2 is a morphism p:GxZ+2Z2 with
(1) ple,z) = z and
(ii) p(g,p(h,2z)) = p(gh,z)
for all z€Z and g,h€G .
We shortly write gz for p(g,z) , and we call Z a G-variety.

The conditions (i) and (ii) have the usual meaning: ez = z and

g(hz) = (gh)z for all z€ 2 and all g,h€G .

3.2 A special case of a group action occurs in the following way.

Definition: A linear representation of an algebraic group G is

a regular group homomorphism

p:G =+ GL(V) .

A linear representation is the same thing as a linear action of
G on a vectorspace V , i.e. an action pp:GxV+V such that

p(g,?) 1is a linear automorphism of V for all g€G .

We shortly say that V 1is a G-module. The notions of simple or

semisimple modules or equivalently of irreducible or completely

reducible representations are defined in the usual way.

A one dimensional representation p:G*GLl= C* 1is called a character
of G . The characters form a group X(G) , the character group of

G .
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3.3 We use the following notations:

.

Gz := {gz|g€G} is the orbit of z€zZ ,

26 := {z€z|gz=z for all g€G} is the fixed point set of G
I %
StabGz = Gz := {g€G|gz=z} is the stabilizer of z in G ,

2'c?Z 1is G-stable if gz€ 2' for all z€2' .

A morphism u:Y+Z between G-varieties is G-equivariant or a
G-morphism if wu(gy) = gu(y) for all g€G and y€Y . A linear

G-equivariant map between G-modules is a G-homomorphism.

Proposition: a) The fixed point set zG is a closed subset of 2Z,

the stabilizer StabGz is a closed suﬁgroup ot G

b) An orbit Gz is open in its closure Gz . The closure Gz

contains always a closed orbit.

(For the first part of b) one uses 2.7, the second follows by

induction on the dimension.)

3.4 Example (notations 1.4): On the module variety modA v ve
’

have a natural action of GL(U) by "transport of structure":

If g€GL(U) and ME€ modA U is given by p:A+End(U) then
'

1+ this is

IM € modA v is defined by gp:A~+End(U) , a~+gp(a)g
’
exactly that module structure for which the linear map g:M-»gM

is an A-module homomorphism.

It is easy to see that two modules M,NE€ modA g are isomorphic if
’
and only if they belong to the same orbit. In particular the orbit

space modA'U/GL(U) is canonically identified with the isomorphism
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classes of n-dimensional A-modules, n := dimU . If M is any

n-dimensional A-module we denote by CM the corresponding orbit

in mOdA,U or in mOdA,n .

3.5 Proposition: Let M,N be two A-modules of dimension n .

Then N is a degeneration of M (2.5) if and only if chq 5

(Use the definition 2.5 and remark 2.4)

Remark: The proposition shows that the relation "<" defines an

ordering on the isomorphism classes of A-modules (cf. 2.5)

3.6 The next proposition gives a module theoretic interpretation

of the stabilizer of a point of modA v
’

Proposition: For any M¢€ modA u ¥e have
'

Stab ) = AutA(M)

eL(u) M

and this group is connected.

(The connectedness follows from the fact that AutA(M) is an open

subset of the vectorspace EndA(M).)

3.7 In a similar way as above we have an action of GL(W) on

algw (and also on assy and bilW » cf£. 1.7) by "transport of
structure" : If A€ algw is given by the multiplication a:WxW-+W ,
the map ga:WxW-W , (w,w')**g(a(g_1w,g_1w')) , defines a new algebra

structure Jac algw , which is again associative and has a unit

element.

Again the orbits correspond to the isomorphism classes and the stabi-

lizer of A€ algw is equal to the automorphism group:
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StabGL(w)(A) = Autalg(A) .

We also have the notion of degenerations of algebras with a similar

result as proposition 3.5

Proposition: algw is connected and contains exactly one closed

orbit, namely the orbit of the commutative algebra Ao =ChI
with 12 =0 .

(If (Ytj) are the structure constants of a n-dimensional algebra

B with respect to a basis 8, = 1, €greeerep then the constants

k

t-yij for 1,3,k #1 ,
Ytj(t) = tz-ytj for 1,31 ,k=1,

% otherwise

Yi4

define algebras Bté algw for t€C with Bte CB for t€c* and

Bo > Ao . Hence Aoi B for any algebra BE€ algw o)

3.8 1It's an interesting but difficult problem to determine the

number of irreducible components of algn and the "generic struc-

tures", i.e. those algebras which are not degenerations of other

structures.
B:gs A= 3 3 CxXCXxC
e [
0 ¢ Cxﬂlfltl/(t)
crel/(£)

///////”

C[s,t]/(sz,st,tz)

ety s
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Here we have two components, one of dimension 9 (the closure of the
orbit of C€CxCxC ) and one of dimension 7 (the closure of the

CC
orbit of [0 ¢]) .

The known cases are those of dimension <5 : alg4 has 5 irredu ible
compoments (Gabriel [ G ]) and alg5 has 10 irreducible components

(Mazzola [M1]).

Remark: One component of algn is always the closure of the orbit
of €x...xC . Mazzola has shown that this is the subset of commu-
tative algebras for n<7 , but there is a 10-dimensional commutative

algebra which is not a degeneration of Cx ...xC ([M2]); cf. 6.7).

nw

:2 The following proposition explains the experimental fact that

all degenerations of modules and algebras known up to now have been

obtained with a "one parameter family".

Proposition: Each degeneration of modules or algebras can be ob-

tained along the affine line C .

(Since K(GLn) is a rational function field any orbit CM or CA
and its closure is a unirational variety. Hence we have to show that
two points on a unirational variety X can be connected by a ration-
al curve. Using Hironaka's result on resolution of singularities

one reduces to the case where X is obtained from a projective

space e" by blowing up a number of times, from which the required

result can be deduced.)

3.10 Example: Consider the set algmodw U of pairs (A,M) where
bta by ’
A 1is an algebra structure on the vectorspace W and M an A-module

structure on U . It is easy to see that algmodw U is in an
’
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obvious way a locally closed subset of bilwx Hom(W,EndU) . By a

similar argument as in 1.7 one can show that algmodw U is in fact
’

an affine variety.

The group GL(W) XGL(U) operates in a natural way on algmodw v’
’

(g,h) (A,M) = (%a,9°D)y,

(g,h)

where the Y9A-module M 1is obtained from the A-module M via

the map =1
9A—9— aA— Enau —INED , prglaehly

We see from the construction that the projection (A,M)+» A defines
a morphism

M algmodwlu—-'-algw
with the fibres

..1 &
N (A) /= mOdA,U A

Clearly u is GL(W)- quivariant and the fibres are stable under

GL(U) .

e

|
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4. Linearly reductive groups and the Hilbert-Criterion
4.1 Definition: An algebraic group G is called linearly reduc-

tive if any linear representation of G is completely reducible.

Examples: A finite group is linearly reductive (Theorem of Maschke) .

C* is linearly reductive; in fact for any C*-module V we have the

decomposition V = ?Vi ' Vi = {vev|t(v) = ti-v for all tec*}) .
(The subgroup uwczc* of elements of finite order is dense in C* .
Furthermore any commutative subgroup FCGL(V) consisting in ele-

ments of finite order is simultanously diagonalisable. This two

facts imply the result.)

The same result holds for any group isomorphic to a product

C*x,..xC* ; such a group is called a torus.

GLn is linearly reductive. (Consider the C-compact subgroup

K := {g¢€ GLnIg-§t = e} of unitarian matrices. It is well known that
GLn = K*D*K where D are the diagonal matrices in GLn . Since
DNK are the diagonal matrices whose entries are roots of unity

we have DcK and hence K = (;Ln , i.e. K 1is (Zariski-)dense in
GLn . Now let op: GLn» GL(V) be a linear representation. The exi-
stence of a Haar measure on the C-compact group K implies that the
restriction p K

is completely reducible. Since K 1is dense in

GLn any K-stable decomposition of V is also GLn-stable.)

2 Theorem: All classical groups, the tori and the finite groups

are linearly reductive. Furthermore products and extensions of

linearly reductive groups are linearly reductive.




230

(The first part follows like for GLn from the fact that these
groups contain C-compact subgroups which are (Zariski-) dense, the

so called "maximal compact subgroups”.)

Remark: A connected algebraic group G is called semisimple if the
maximal solvable normal subgroup is finite. (E.qg. SLn’ SOn, Spn )
The classification of these groups is known. One shows that semi-
simple groups are linearly reductive and that a connected linearly
reductive group is an extension of a semisimple group with a torus.

Furthermore a semisimple group has no non-trivial character.

4.3 A group homomorphism A:C*»*G is called a one parameter sub-

.

group of G (shortly : 1-PSG).

If Z is a G-variety and z€2 , a 1-PSG A defines a morphism
9 1 €Y +3 ;, £ AlE)E .

If ¢ can be extended in a C-continuous way to a map $:C+Z2 then

¢ is automatically a morphism. In this case we shortly write
lim A(t)z = z,
t+0

where zy = $(0) . Clearly we have zq€Gz .

In the example of the module variety modA v ve have the following
’

interpretation of the 1-PSGs .

Proposition: Given two A-modules M,NemodA U there is a 1-PSG
’
A(t)

A:C*>GL(U) with 1lim
ST 5 )

tration on M such that the associated graded module is isomorphic

M =N if and only if there is a fil-

to W.
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Proof: For any 1-PSG A : €C*—~GL(U) we have the decomposition

sk

U=&u into eigenspaces U, = {u€u|A(t)u=t u for all te€c*} ,

i€2 . Given M€ modA U and the corresponding decomposition
'
At G
M= ?Mi it is not hard to see that ( )M has a limit for t=+0
if and only if the subspaces M(j) F'?j“i are A-submodules, and
i

that li{)n“t)n is isomorphic to &M /M
£ :

A . From this the pro-
5 ()

(3+1)
position follows easily.

4.4 One-parameter subgroups can be used for the study of orbit

closures. One of the main results in this direction goes back to

Hilbert; it is a partial inverse of the fact mentioned above that

z,.€ Gz if zo=lim)\(t)z =
0 £+0

Hilbert-Criterion: Let V be a GLn—module and v€V a "null-

vector", i.e. Gan 350 . Then there is a 1-PSG ) : t!:"-*GLn with

limA(t)v=0 .
t+0

Proof: We only indicate the main steps of Hilbert's proof.
a) Consider the ring C[[t]] of power series and its quotient field
C((t)) of Laurent series. Then there is a matrix g(t) € GLn(d:((t)) )

such that (g(t)v)t=0 . | R

b) The theorem of elementary divisors implies that every matrix

g(t) € GLn(C((t)) ) can be written in the form

g(t) = 91(t) *A(t) ¢ g,(t)

€
with gi(t)EGLn(d:lIt]]) and A(t) =| °, ; riEZ (d.esi= A

t
is a 1-PSG!) From a) we get

0 = (g(t)v) o = (A(E)g,(E)V) o = (A(EVG,(0)v) o -
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Hence %Lgx(t)v' = 0 for v' := 92(0)ve V . Replacing A by the
-+

conjugate 1A' = 92(0)-1ng(0) we have the required result.

4.5 For many applications the following generalization of Hilbert's

Criterion is very useful; a nice proof may be found in [ Bi ] .

Theorem (Hilbert-Mumford-Birkes): Let G be linearly reductive,

Z a G-variety and Gz an orbit in 2z . If CcGz is a closed

orbit then there is a 1-PSG A :C*+G with %i@l(t)z& Ches
In case of the module variety this result and proposition 4.3 imply

the following. (For b) use the theorem of Jordan-HSlder.)

Proposition: Let M be an A-module of dimension n and CMC:modA =

’

the corresponding orbit.

a) CM is closed if and only if M is semisimple.

b) Each orbit closure E; contains exactly one closed orbit,

rM
of M (i.e. the associated graded with respect to a composition

namely Cg where grM is the direct sum of the simple factors

series).

Corollary: Assume A finite dimensional.

a) The connected components of modA n are in one-to-one corre-
’

spondence with the semisimple A-modules of dimension n .

b) A is semisimple if and only if modA B is a (disjoint) union
’

of closed orbits for all n .

4.6 Remarks: 1) The second statement of the proposition above

holds in a more general situation (cf. 5.3): The closure of an orbit

under a linearly reductive group contains exactly one closed orbit.
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2) One may ask whether every degeneration of A-modules can be ob-
tained via a 1-PSG. More precisely, given ME€ modA U and a degener-
’

ation N<M , does there exist a 1-PSG A : C*-GL(U) with

By proposition 4.3 this would imply that N must be decomposable.

But we have seen in the first chapter an example of an indecomposable
degeneration (II.2.9 Remark).

3) If G is a torus, Gz an orbit and y¢€ Gz there is always a
1-PSG X with %igk(t)z(&Gy . In connection with the question above

this implies the following: If the simple factors of M€ mod}\,n all

have multiplicity one, any degeneration of M can be obtained via

a 1-PSG and is in particular decomposable.

(For a proof one has to use Luna's slice theorem [ Lul).

4) Recently G. Kempf has developed the theory of optimal 1-PSGs

[Ke] : Given a G-module V and a "nullvector" vé€V he attaches

to v the "best" 1-PSG A with %igx(t)v =0

This has interesting applications to rationality questions and to

the study of the geometry of orbit closures (cf. [ H2]).
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g. Invariants and algebraic quotients

In the first chapter we have seen in some examples how invariant
functions may help to distinguish non equivalent objects and to
attack the classification problem. In this section we want to formu-
late the relevant general results about invariants and there geo-

metric interpretation.

5.1 If G 1is an algebraic group and 2z a G-variety the subring

0(2)¢ := {(£€0(2)|£(gz)=£(z) for all g€G,z€ 2}

of ©®(Z) 1is called the ring of invariant functions on 2 with

respect to G or shortly the invariant ring.

Theorem (Hilbert, Noether, Weyl, ...): If G 4is linearly reductive

and 2 a G-variety then the invariant ring O(Z)G is finitely

generated.

(For a short proof see [Mu] or [Kr].)

Remark: It was an open question for a long time whether such a
finiteness result holds in general (Hilbert's fourteenth problem,
1900 International Congress, Paris). A counte}example was constructed
only in 1959 by M. Nagata. It implies that for any non linearly
reductive group G there is a G-variety 2 such that o(z)G is
not finitely generated. Clearly for special varieties the finite-

- ness result may be true, as in the case of linear actions of the

additive group ct (Theorem of Weitzenbdck, 1932).

5.2 We now use the result above to make the following important

construction. Choose generators f1""’fr of o(z)G and consider
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the morphism

n:z+¢t , 2 (£, (2) 4eeerf (2) .

Putting Y :=n Z)CZCr we get the diagram
g —0 4 ¢f

\\\;\\\\\\‘U
Y

and an isomorphism 7* : O(Y) * O(Z)G 3

Definition: A morphism w: Z-+Y such that =* induces an isomor-

phism O(Y);-O(Z)G is called an algebraic quotient of 2z by G

or shortly a quotient map.

By definition an algebraic quotient is uniquely determined (up to
isomorphism) by G-variety 2 (use 1.3 and proposition 2.1); it will
be denoted by LI Z*-Zfb . (This notation refers to the fact that
the quotient has something to do with the orbit space 2Z/G ; cf.

below.)

5.3 1In the following proposition we collect the three main proper-

ties of a quotient map w: Z+Y by a linearly reductive group G .

(For a proof we refer to the literature cited above.)

Proposition: Let G be linearly reductive, 2 a G-variety and

m:Z+Y an algebraic quotient.

(U) 7w is constant on orbits and universal with this property.

(C) If XcZ is a closed G-stable subset then w(X) 1is closed in

Y and X : X+ 7w(X) is an algebraic quotient.

(S) w separates disjoint closed G-stable subsets of 2 .
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Remark: The universal property (U) of an algebraic quotient shows

that it is the best "algebraic approximation" to the orbit space.

It is even the best continuous approximation, as shown by the follow-

ing result.

Corollary: Each fibre n_1(y) contains exactly one closed orbit

C and we have

7 (y) = {z€z|GzocC) .
As a consequence we see that the quotient 2/G parametrizes the
closed orbits in 2 . In particular we have Z/b = 2/G for a finite

group G .

5.4 In case of a linear action of G on a vector space V we find

1_1(ﬂ(0)) = {vev|Gv>30} .
This explains the notations nullvector (4.4) and nullfibre and shows

in particular that the set of nullvectors is closed.

We have already seen that the Hilbert-Criterion is the right tool
to determine the nullfibre (4.4). From the knowledge of the nullfibre
one obtains informations on the invariant ring by the following

result due to Hilbert (cf. [ Kr]).

Proposition: Let f1""’fs be invariant functions defining the

nullfibre, i.e. f1,...,fs€ O(V)G with ¥(f1""’fs) = V0 . Then

O(V)G is a finite module over its subring €[f1,...,fs]

5 Examples: 1) The quotient moss := modA U;bL(U) describes
r

A,U

the semisimple modules. If A is finite dimensional then moss,
’

is finite (cf. Proposition 4.5).
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2) Let A be commutative and choose an affine variety Y with

coordinate ring ®(Y) = A//0 . Then there is a bijection

(n)
>4 mossA'n

\n) is the symmetric product Yn/cn (the symmetric group

where Y

g operates by permuting the factors).

In particular if Y is connected then moss and modA n are
’

A,n

both connected. Furthermore if A/Y0 is not normal then moss,
’

and modA o are both not normal (cf. proposition 5.6a),
’

simple

3) The subset S := mOdA,U

of simple modules is open in

. :

mOdA,U , its image under = mOdA,U - mossA'U is open and—smeeth
St 00ty

and s ¢ S + w(S) 1is a fibration whose fibres are orbits, i.e.

m(S) = S/GL(U) (cf. [ P1] ; a more general result follows from

Luna's slice theorem [Lul).

; g For a quotient map m : Z + Y := Zié by a reductive group G

we have the following transition properties. (Recall that 2 is

called normal if ©O(Z) is normal, i.e. integrally closed in its

quotient field.)

Proposition: a) If 2 is connected, irreducible or normal then

z/G has the same property.

b) If 2 is factorial and if G has no non-trivial character then

Y is also factorial.

Remark: Concerning the smoothness of the quotient G.Kempf has

shown the following result conjectured by V.L. Popov: If G is semi-

simple and V a G-module with dimeG =d< 2, then V/.G > cd .
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6. Semicontinuity results

It is sometimes important to know whether a certain naturally de-

fined subset of an algebraic variety is open. A typical example is

the set of points where the variety is normal (or smooth). Other

examples occur in the case of our module variety modA u ©°f of
’

algw , e.g. the subset of projective (or injective) modules in

modA U’ the subset of non-commutative algebras in algw or of
’

semisimple algebras (cf. below). Many of these problems can be re-

duced to the following result.

6.1 Theorem (Chevalley): Let n:2-+Y be a morphism between affine
-1

varieties. Then the function z**dimzn (n(z)) is upper semicontinu-

ous.

(A function d: 2-+N is upper semicontinuous if for all n the set

{z€2z|d(z) <n} is open in 2 .)

Remark: In general it is not true that y*ﬁ-dimn-1(y) is upper

semicontinuous. Nevertheless this holds for quotient maps w:2Z-+Y

as a consequence of the property (C) (proposition 5.3).

6.2 Example: The function A+ dim(zentA) on algw is upper semi-

continuous. In particular the commutative algebras form a closed

subset (cf. remark 3.8).

To see this take the closed subset Z:= {(w,A)|w€ zentA} of
W x algw and consider the map n :z-*algw induced by the projection
and the section o: algw-»z + A+— (0,A) . Clearly n-1(A) =

zent A x {A} , hence

[
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dim zent A = dimn_1(A)= dimo(A)n_1(n(c(A))‘

and the claim follows from Chevalley's theorem.

3 Proposition: Let Z be a G-variety. Then the function

z+— dim Gz is lower semicontinuous.

The proof is similar to that of the example above and follows from
the diagram
G x 2> {(g,2)|gz =1z}

pr

where n is induced by the projection and ¢ is the section

zH>(e;2) .

This result leads to the concept of sheets (Dixmier, Borho-Kraft

[BK]). Assume G connected.

Definition: A sheet in Z is a maximal irreducible subset con-

sisting in orbits of a fixed dimension.

It follows that a sheet is locally closed and G-stable, hence we

obtain a finite stratification of Z into locally closed G-stable

subsets.
4 As an application let us prove the following.

Proposition: Let Z be a G-variety, G linearly reductive, and

T2Z+Y = Z;b the quotient map. Then the points y €Y where the

fibre ﬂ-1(y) contains only finitely many orbits form an open set
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Proof: Put Y! s {ye Ylﬂ-1(y)/G finite} and consider the

closed G-stable subsets

z, 3= {z¢€ z|dim Gz <k}

of 2 and the quotient maps w, := 7 £t 2, +n(2,.) . It follows
k zk k k

that n?(y) contains ® -many orbits if dim 'n;1(y)>k . Define

. -1
Y, = {y € 1r(Zk)|dim'nk (y)>k} .

This subset is closed in m(Z (c£. remark 6.1), hence closed in

K
Y , and we have YkCY' for all k . On the other hand if ﬂ-1(y)

contains «-many orbits of dimension k then y€Y . This proves

k

X' = UYk « hence ¥' is closed in Y .

6.5 Example: The projective resp. the injective modules ME€ modA U
ol 4

form an open set.

To see this fix a free resolution
i i

eee=—r A 2—> A 1—" A— A/radA— 0

of A/radA . From the canonical identification HomA(Ai,M) = (J1

for all A€ modA v ve get a sequence
’

‘Po 14 (P1 12

o g § s 8§ R s, 0 PG S

where the linear maps ¢, = ¢,(M) depend regularly on M€ mod
i i A,U

It follows that the function Mr-dim IE:xti (A/rad A, M)

= dim Ker 9415 dim Im Pi1 is upper semicontinuous. In particular the
injective modules form an open set. For the projective modules we

may use the isomorphism mod mod given by

A,u ~ ™%op,ur
M M* := Homc (M,C) which identifies projective with injective mo-

dules.

S
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6.6 Sometimes we may use another method based on the concept of

.

parabolic subgroups.

Definition: A closed subgroup P&G 1is called parabolic if G/P

is C-compact.

Example: A subgroup PCGLn is parabolic if and only if it con-
tains a conjugate of the group of upper triangular matrices. More
precisely the parabolic subgroups of GL(V) are the stabilizers of
flags in V . (It's easy to see that GLn/P is C-compact for any
subgroup P containing the group B of upper triangular matrices,
since GLn = KB with the C-compact subgroups K of unitarian

matrices.)

Proposition: Let Z be a G-variety and YcZ a closed subset. If

Y 1is stable under some parabolic subgroup of G then

GY = {gy|g€G,y€ Y} is closed in 2 .

The proof is based on the following construction. Consider the free
action of P on Gx 2 given by pl(g,z) := (99_1,pz) . The orbit
space G X Pz is a fibre bundle over G/P and in fact the trivial
bundle G/PxZ , the trivialization being induced by the map
GXZ3GxZ , (g,z2)V (g,92) . Now GXY 4is P-stable, hence defines

Py of cxPz 3 G/Px2Z . It follows that GY is

a subbundle G X
the image of GXPY under the projection G X pZ ¥ G/PxZ + 3% .
Since G/P is C-compact the subset GY is C-closed. From this the

claim can be deduced (cf. 7.5).

6.7 Example: The function A+ dim(radA) on algw is upper

semicontinuous. In particular the semisimple algebras A€ algw form
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an open set.
To see this fix a subspace W'CW and consider the closed subset
Y := {A€ algwIW'CradA) of z-xlgw . Clearly the stabilizer of Y
is a parabolic subgroup (namely the stabilizer of the flag
0CW'CW ). It follows that

GL(W)Y = {A€ algwldim(radA)zdimW'}

is closed in algw 5

Remark: Using tangent space arguments one shows that {ae algw|A
semisimple} and more generally {AE€ algw| globaldimA <1} are

finite unions of open orbits.

A similar argument proves that the projective (resp. injective) mo-

dules M€ modA v are finite unions of open orbits (cf. [ G ]).
’

6.8 Example: An algebra A is called basic if A/radA is

commutative i.e. if A/radA ¥ C€Cx...xC . The subset of basic alge-

bras in algw is closed.

Again fix subspaces wij of dimension i = 0,1,...,dimW=-1 .

Consider the subsets

Y, 1= {ae algw|wicrad1\ and [A,A]CWi}

which are easily seen to be closed. Clearly any algebra in Yi is
basic. On the other hand a basic algebra A belongs to GL (W)Y:L

for i = dim(radA) . As above Y is stable under a parabolic,

>
hence the basic algebras form the closed subset LiJGL(W)\{1 "

AR i T AT AT

§ o AN T A SO B D
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n~
.

Constructible subsets

n~

4} In general a morphism p:2-+Y is neither open nor closed.

But one can show that the image u(Z) 1is a finite union of locally

closed subsets of Y .

Definition: A finite union of locally closed subsets of a variety

Y 1is called a constructible subset.

The constructible subsets of Y form a lattice, the lattice gener-
ated by the open and the closed subsets. The following examples will

explain a little bit the term "constructible".

1.2 The main general result on the structure of images of morphisms

is the following.

Proposition (Chevalley): If w:2-+Y is a morphism and 2'cz a

constructible subset, then u(Z') is also constructible.

For a proof we refer to the literature.

Remark: Clearly for more special morphisms we get more precise

results. E.g. a finite morphism is always closed (p: 2+Y is finite,

if the coordinate ring 0(Z) is a finitely generated module over

0(Y) ) , or a flat morphism w: 2Z-+Y 4is always open (u is flat if

0(z) is a flat module over O(Y) ) .

7.3 Example: Define the affine variety algmodw v t° be the set
st ’

of pairs (A,M) , where A is an algebra with underlying vector-
space W and M an A-module with underlying vectorspace U (cf.

3.10) . We claim that the pairs (A,P) where P 1is a projective
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A-module form a constructible subset.

To see this consider the variety

algmo% v > Hom(wn,U) X Hom(U,wn)

and the closed subset 2 of 4-tupels (A,M,0,1t) , where

(a) oe°t = IdU and (b) o :An->M and T :M-*An are A-linear;
i.e. M is via T a direct summand of A" . Choosing n big
enough (e.g. n=dimU) the image of Z in a].gmodw'U under

the projection (A,M,o0,1)+— (A,M) is the required subset.

1.4 Example: The subset of algebras A€ algw of global homo-

logical dimension <s is constructible for any s .

Define algm°dw,U1,Uz,...,Us as above to be the set of tupels
(A,M1,...,Ms) , A an algebra on W and Mi an A-module on U1 -
Now consider the variety

alngdW,U1,.-.,Us x Hom(U_,U__ )% ... xHom(U1,w)

and the subset 2 of tupels (A,P1,...,Ps,us,...,u1) defined by
the following conditions:

(@) P.,ice,;P are projective A-modules,
1 s

(b) the maps My o Pi—-P and My s P,—~A are A-linear,

=1 1

M
> 5ie WP —1, A is exact,

Us
(c) the sequence O + P — P__, 1

(d) u1(P1) = radA .

It is easy to see that (b) and (c) define closed subsets, (d)
a locally closed subset and (a) a constructible subset (7.3), which
implies that 2 is constructible. Projecting onto algw we ob-

tain a constructible subset of algebras of global homological

T \.,wﬁ

A SR TR s S

e B T 4 T
e

T
—

245

dimension < s . The claim follows now by varying the dimensions of

the vectorspaces U1""’Us in a suitable finite range.

7.5 It easily follows from the definition that any constructible

subset Y<Z contains a set U which is open and dense in Vi,
A consequence of this "thickness" property of constructible sets is

the following result which is useful in comparing the Zariski- and

the C-topology.

Lemma: If a constructible set YcZ is C-closed then it is also

closed in the Zariski-topology.




246

References for chapter II :

[Bi]

[BK]

[Fo]

[G]

[H2]

[Ke]

[Kr]

[Lu]

M1]

[M2]

[Mu]

[P1]

[Sp]

Birkes, D.: Orbits of linear algebraic groups. Ann Math.
93 (1971), 459 - 475

Borho, W., Kraft, H.: Ueber Bahnen und deren Deformatio-
nen bei linearen Aktionen reduktiver Gruppen.
Comment. Math. 54 (1979), 61 - 104

Fogarty, J.: Invariant Theory. W. A. Benjamin, Inc., New
York, Amsterdam (1968)

Gabriel, P.: Finite representation type is open. In: Re-
presentations of Algebras. Proceedings of the
International Conference, Ottawa 1974.
Springer LN 488 (1975), 132 - 155

Hesselink, W.: Desingularizations of Varieties of Null-
forms. Invent. Math. 55 (1979), 141-163

Kempf, G.: Instability in Invariant Theory. Ann. Math.
108 (1978), 299 - 316

Kraft, H.: Geometrische Methoden in der Invariantenthe-
orie. Vieweg-Verlag (forthcoming)

Luna, D.: Slices étales. Bull. Soc. Math. France, Mé-
moires 33 (1973), 81 - 105

Mazzola, G.: The algebraic and geometric classification
of associative algebras of dimension five.
Manuscripta Math. 27 (1979), 81 - 101

Mazzola, G.: Generic finite schemes and Hochschild co-
cycles. Comment. Math. Helv. 55 (1980), 267 -
293

Mumford, D.: Geometric Invariant Theory. Erg. d. Math.
34 (1970) . Springer-Verlag: Berlin-Heidel-
berg-New York

Procesi, C.: Finite dimensional representations of alge-
bras. Israel J. Math. 19 (1974), 169 - 182

Springer, T. A.: Invariant Theory. Springer LN 585 (1977)

s Bt P A SR e Q

e

247

Chapter III ALGEBRAS OF FINITE REPRESENTATION TYPE

A finite dimensional algebra A 1is called of finite representation

type if there is only a finite number of equivalence classes of in-
decomposable finite dimensional representations. It is important to
know whether this condition is "open" in the following sense: Given

a family (A of algebras, is it true that in a neighbourhood of

¢)

an algebra A of finite representation type all algebras are of

to

finite representation type? P. Gabriel has given a positive answer

to this question,

Theorem (Gabriel [G]): The algebras AE€ algn of finite represen-

tation type form an open set.

One could express this in a slightly different way: There exist
polynomials Pqre--sPg (in n3 variables) such that an n-dimensional
algebra A 1is of finite representation type if and only if some of

the pi's do not vanish on the structure constants of A .

In this last chapter we are going to present a proof of Gabriel's

theorem, following his original ideas with some small modifications.
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1. Auslander's construction

1.1 Definition: A finite dimensional algebra T is an Auslander

algebra if (a) T is basic, (b) T is of global homological di-
mension <2 and (c) there is an exact sequence

0+T ~» Io -+ I1 of TI'-modules with Ii injective and projective.

We use the results of II.6 and II.7 to prove the following propo-

sition.

Proposition: The Auslander algebras T € algm form a constructible

subset.

Proof: As in II.7 we denote by algmod the affine variety

------ UV,
of triples (F,IO,I1) , I an algebra structure on U , I0 and I1
I'-module structures on V and V. . Now consider the product

0 1

Z := algmoclu'v x Hom(U1,v0) X Hom(vo,v1)

0’V

and the subset Y of 5-tupels (F,IO,I1,u0,a1) satisfying the
following conditions:

(i) I is basic,

(ii) T has global homological dimension <2 ,

(14331 and I are injective and projective TI'-modules,

0 1
(iv) LA Lile I0 and oy ok I0 -+ I1 are I'-linear,
(v) the sequence 0 + T » Io + I1 is exact.

We have already seen that (i) defines a closed subset (II.6.8),

(ii) and (iii) both constructible subsets (II. 7.4 and II. 7.3) of

Z. It is easy to see that the last two conditions determine a locally

closed subset (cf. II. 7.4). Alltogether shows that Y is

< oo o e S0 m e o
e

249

constructible. By definition its image in algU consists in

Auslander algebras. Varying the dimensions of V0 and V1 in a

big enough but finite range we see that the Auslander algebras in

algU form a constructible subset.

1.2 Now Auslander has shown the following [ A ] : Given an Aus-

lander algebra I and a projective and injective TI'-module M then

the algebra Endr(M) is of finite representation type, and every

algebra of finite representation type occurs in this way.

We use this construction to show the following result which is a

first step in the proof of the main theorem. Let us denote by

algﬁin the subset of algebras A€ algn of finite representation

type.
Proposition: algf‘in is a countable union of constructible subsets
of algn .

Proof: Consider the variety bimod of triples (I',M,A) , where

—————— u,v,W
I' and A are C-algebras with underlying vectorspaces U and W
and M is a I'-A-bimodule structure on the vectorspace V . Let Y
be the subset of triples (I',M,A) satisfying the following 3 con-
ditions:

(i) ' is an Auslander algebra,

(ii) M is projective and injective as a I'-module,

(iii) The canonical map A + Endr(M) is bijective.

Using the projections



.

it follows from proposition 1.1 and example II.7.3 that the first

two conditions define a constructible subset of bimod . FOX

u,v,w

the last condition we first remark that the function (I',M,A)H—

dimEndr(M) is upper semicontinuous (since dim Endr(M) =

dimAutr(M) and Autr(M) = Stab , c£. I1.6.3). Further-

GL (V) (T, M)
more (T ,M,A)— dimAnnAM is also upper semicontinuous (cf. example

II. 6.2).

As a consequence condition (iii) defines a locally closed subset

of bimod . Via the projection bimod

u,v,w
constructible subset of :—xlc_;w and the result follows from Auslan-

U,V W > algw we get a

der's construction by varying the dimensions of U and V .

Rt
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no
.

A first openness result

221 We have already considered the variety algmodw U of pairs
Rz gty '

(A,M) , A an algebra structure on W and M an A-module structure

on U (cf. II. 3.10). The group GL(W) xGL(U) operates on
algmodw U in a natural way. Furthermore the fibres of the canoni-
’
...1 ~
cal map wu: algmodwlu-valgw are of the form u (A) = modA,U '

hence stable under GL(U) . Therefore we obtain a commutative dia-

gram (n := dimU)
o % &
::\lgmodw’U —— algmossw,n := algmodw'U/GL(U)
u H
algw

where the quotient algmoss can be seen as the variety of pairs

W,n

(A,n) , A€ algw and n an isomorphism class of a semisimple module

of dimension n :

== £ ¥ -
(A) = modA’U/GL(U) = mossA’n

(II. 5.5 example 1). In particular the fibres of . are finite.

2 Proposition: The map J : algmoss -> algw is closed.

W,n

of algebras A€ algw and surjective linear maps a : WU '

n := dimU , and the closed subset 2z of those pairs (A,a) , where
Ker o cA” is an A-submodule. We have an obvious surjective map
Y3 2 algmodw’U + (A,a)F— (A,Ima) , which is algebraic (i.e.
the pullback ¥*f = foY of any regular function f£f¢€ O(algmodw'u)

is locally a quotient of regular functions on the affine variety
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icialgwx Hom(wn,U) ). Now the action of GL(U) on algwx Sur(wn,U)
is free and the orbit space Z/GL(U) is a closed subset of
algwx Grn(wn) where Grn(wn):= Sur(wn,U)/GL(U) is the Grassmann
variety of subspaces of codimension n of W Using the fact that
the grassmannian is C-compact one can show that the map

¢ : Z/GL(U) - algw
induced by the projection er: algwx Grn(wn) » algw is closed
(with respect to both the Zariski- and the C-topology, cf. II. 7.5).

Furthermore the map Y : Z -+ algmod clearly induces a map

W,U

Y : 2/GL(U) + algmossw’n H

algw’<Sur(wn,U) = ———!—* algmod

e

algw x g™ (W ) 2Z/GL(U) . algmoss

N

algw

w,0

W,n

In particular ¢ decomposes in the form ¢ = ﬁ'? , hence ﬁ is a

closed map too.

Remark: Along the same type of arguments one can show more gener-
ally that u is a finite morphism, i.e. the algebra O(algmossw n)
is a finitely generated module over o(algw) . (It's well known

that finite morphisms are closed, cf. II. Remark 7.2.)

3 For any finite dimensional algebra A we denote by vA(n)

the number of isomorphism classes of A-modules of dimension n .

D T Ta—
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Proposition: For a fixed n€N the set {A¢€ algwlvh(n)< ©} is

open in algw .

Proof: This is a consequence of the result above and proposition

6.4 of the second chapter. In fact we have the factorization (2.1)

alqmodw U
G i
algy u

with a quotient map w and a closed map u (proposition 2.2) ,

n:= dimU . Clearly vA(n)< © means that the fibre u_1(A) con-

Won = algmodw’U/GL(U)

tains only finitely many orbits (since u_1(A) = mod ) . We

have seen in chapter II. 6.4 that the set

Y := {y€ algmoss, nH‘L‘ orbits in 1 ' (y) <=}

is open in algmoss, . By definition we have

W,n

{ae algw|vA(n) = w} = u(algmossw,n -Y)

and the claim follows from proposition 2.2.
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A Proof of the main theorem

nw

3.1 Let us denote by Sr the set of all A€ a.lgw having only

a finite number of isomorphism classes of modules of dimension < r .

The famous Brauer-Thrall conjecture proved by L.A. Nazarova and

A.V. Roiter [NR] states that

£int s
algw = 1Sr .

n o8

T
In other words if an algebra is not of finite representation type
then for some dimension there are infinitely many non isomorphic

modules.

nno

Now we are ready to prove Gabriel's theorem.

Theorem: The algebras A€ algn of finite representation type form

an _open set algrflnl of algn . More precisely there is a natural

number d depending only on n such that

algrf,in = 54 = {nc¢ algnlvA(r) <« for r<d}

Proof: We have seen above that

Oon the other hand proposition 1.2 shows that

o
alg:m = t&_J1Ct

with a suitable increasing sequence C1 CC2 [ C3 S ..o  OFf constructi-

ble subsets of a\lgw . Now the claim follows from 3.3.

g :=i Lemma: Let 2 be a variety, C1CC2C"' an_increasing

sequence of constructible subsets and S.| DszD ... a decreasing

i R e e A
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sequence of open subsets with

= @
UL iC; = n s

i=1 1 3

Then we have Sr = Ct for some r,t .

Proof: For any closed subset 2'CZ we get a similar statement

replacing C by. 'C.A 2%  and Sj by sjnz' . It follows that

i i
we can assume 2 irreducible and furthermore that the statement
is true for all proper closed subsets of Z . By assumption we have

for any j>0

Z= U C, U (z2=-8,
130 4. ( J)

But an irreducible variety 2 cannot be a countable union of proper
closed subsets. (This is clear for dim2Z =1 and follows in general
by induction, since every hypersurface must be contained in one of
these subsets.) As a consequence 2 = E; for some s (the case

Sj = @ being trivial). Now Cs contains an open dense subset U

of Z and by induction the claim holds for 2' := Z-U . This
means that (2-U) N Sr = (z-U) ﬂCt for big enough r,t, hence

Sr = Ct since both contain U .
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